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Supporting Figures

Ga-LTCA

Intensity (a.u.)

LTA (F’i:)F#O4-O14-2798)
.| |I.| ..t |I.|..||.|

LTC (PDF#04-014-2797)

20 25 30 35 40
26 (degree)

Figure S1. XRD pattern for the as-prepared Ga-LTCA sample. The reference XRD patterns for
LTC and LTA refer to ICDD PDF#04-014-2797 and PDF#04-014-2798, respectively.
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Figure S2. UV-vis DRS data obtained from the as-prepared Ga-LTCA sample.



Figure S3. SEM images of the Ga-LTCA sample.
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Figure S4. Photocatalytic H> evolution rates over Ga-LTCA photocatalysts prepared using the

photodeposition method for cocatalyst loading with various Rh loading amounts.
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Figure S5. (a) Photocatalytic H, evolution rates over Ga-LTCA photocatalysts modified using

the impregnation method with 0.4 wt% of different cocatalyst metals. (b) Time courses of H»

gas evolution over Ga-LTCA photocatalysts modified using the impregnation method with

different cocatalyst metals at 0.4 wt%.
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Figure S6. Time courses of H, gas evolution using Ga-LTCA photocatalysts modified with

different amounts of the Rh cocatalyst using the impregnation method.
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Figure S7. Time courses of H; gas evolution over photocatalysts loaded with a Rh cocatalyst

and heated at different reduction temperatures following impregnation.
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Figure S8. (a) The effect of the amount of the 0.4 wt% Rh(IMP)/Ga-LTCA photocatalyst on the
photocatalytic H, evolution rate. (b) Time courses of H, gas evolution reactions using different

amounts of the 0.4 wt% Rh(IMP)/Ga-LTCA photocatalyst.
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Figure S9. TEM and STEM-EDS mapping of a 0.4 wt% Rh(IMP)/Ga-LTCA sample.
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Figure $10. Additional HRTEM images of a 0.4 wt% Rh(IMP)/Ga-LTCA sample showing that the

Rh particles had hemispherical shapes and intimate contact with the Ga-LTCA surface.
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Figure S11. Additional TEM images of a 1.0 wt% Rh(PD)/Ga-LTCA sample showing that the Rh

particles were aggregated on the top surfaces of the Ga-LTCA particles.



Figure S12. Photograph showing a Ga-LTCA photocatalyst film and associated water contact

angle (5).

Figure S13. HRTEM image and STEM-EDS mapping of a 1.0 wt% Rh(PD)/Ga-LTCA sample.
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Figure S14. (a) XPS spectra of Rh species on Ga-LTCA loaded by photodeposition method (PD)
and the same photocatalyst treated with H reduction at 573 K for 1 h (H; reduced). (b) Time
courses of H, gas evolution on Ga-LTCA loaded with a Rh cocatalyst using photodeposition

(PD) and the same photocatalyst treated with H; reduction at 573 K for 1 h (H;z reduced).

The 1.0 wt% Rh(PD)/Ga-LTCA sample was treated with H; reduction at 573 K for 1 h. As shown
in the XPS spectra, the H>-reduced sample showed significant metallic Rh® species with minor
Rh* species, which was similar with the XPS data of the Rh(IMP)/Ga-LTCA sample (Figure 2e
in the main text). Moreover, the H; reduced sample was significantly improved HER activity
(1186 pumol/h) compared with original PD sample (130 umol/h). This result suggests that the
metallic Rh? species are important for the improved photocatalytic activity. However, this
activity is still lower than the HER activity of the 0.4 wt% Rh(IMP)/Ga-LTCA sample (1562
umol/h). This is because the Rh loading amount and cocatalyst distribution are also important

for the photocatalytic performance as is discussed in this work.
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Figure S15. STEM-EDS mapping analysis of the 0.2 wt% Cr,03/0.4 wt% Rh(IMP)/Ga-LTCA
sample showing that Cr was in close proximity to the Rh, suggesting that the photoexcited

electrons acted on the lateral surfaces of the Ga-LTCA particles.
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Figure S16. TA kinetic profiles of surviving electrons probed at 5000 cm™ (2000 nm) in various
samples under 470 nm excitation (3 mJ pulse™) for different cocatalysts: bare Ga-LTCA, 0.4
wt% Pt(IMP)/Ga-LTCA, 0.4 wt% Ru(IMP)/Ga-LTCA and 0.4 wt% Rh(IMP)/Ga-LTCA. The electron
transfer efficiency increased in the order of Rh > Ru > Pt at the same loading amount (0.4
wt%). This result is in good agreement with the H, evolution activity data obtained from Ga-

LTCA loaded with different cocatalysts (Figure S5).
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Figure S17. TEM images and EDS elemental analysis results for selected areas that confirm

the Rh/Cr,03 core-shell structure in a 0.2 wt% Cr,03/0.4 wt% Rh(IMP)/Ga-LTCA sample.
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Figure S18. Time courses of H, gas evolution reactions using the 0.4 wt% Rh(IMP)/Ga-LTCA
photocatalyst with and without Cr,03 in a 15 mM aqueous Nal solution under visible light (A
> 420 nm). Reaction conditions: photocatalyst 50 mg, Nal aqueous solution (15 mM, 100 mL)

adjusted to pH 4 by adding a 0.1 M aqueous H,SO4 solution, Ar 5 kPa background pressure.
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Supporting Table

Table S1. Comparison of reported hydrogen evolution reaction activities over various

oxysulfide photocatalysts.

Photocatalyst Cocatalyst HER activity AQY (%) Reference
(Absorption edge) (umol h)

Ga-LasTiCuo.sAgo.107Ss Rh 464 3.1 (420 nm) [1]

(700 nm)
LasTi,AgO7Ss Pt/NiS 250 No data [2]

(600 nm)
Ga-LasTi2Cu0.90Ag0.107Ss Pt/NiS 130 No data [2]

(700 nm)
LasTi2Ag07Ss Pt 225 1.2 (420 nm) (3]

(600 nm)
LasTi2CuO7Ss Pt-PD/NiS 170 1.3 (420 nm) [4]

(650 nm)
LasTi2CuO7Ss Pt-IMP/NiS 280 1.8 (420 nm) [5]

(650 nm)
Sm;Ti205S; Rh 350 No data [6]

(650 nm)
Ag-Sm;Ti,05S; Rh 949 8.8 (440 nm) [7]

(650 nm)
Y2Ti2055; Rh 125 5.3 (420 nm) (8]

(650 nm)

Ga-LasTi2Cuo.0Ag0.107Ss Rh 1562 11.2 (420 nm)  This work

(700 nm)
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