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Supporting Figures 

 

Figure S1. XRD pattern for the as-prepared Ga-LTCA sample. The reference XRD patterns for 

LTC and LTA refer to ICDD PDF#04-014-2797 and PDF#04-014-2798, respectively. 

 

 

Figure S2. UV-vis DRS data obtained from the as-prepared Ga-LTCA sample. 
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Figure S3. SEM images of the Ga-LTCA sample. 

 

 

 

Figure S4. Photocatalytic H2 evolution rates over Ga-LTCA photocatalysts prepared using the 

photodeposition method for cocatalyst loading with various Rh loading amounts. 
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Figure S5. (a) Photocatalytic H2 evolution rates over Ga-LTCA photocatalysts modified using 

the impregnation method with 0.4 wt% of different cocatalyst metals. (b) Time courses of H2 

gas evolution over Ga-LTCA photocatalysts modified using the impregnation method with 

different cocatalyst metals at 0.4 wt%. 

 

 

Figure S6. Time courses of H2 gas evolution using Ga-LTCA photocatalysts modified with 

different amounts of the Rh cocatalyst using the impregnation method. 
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Figure S7. Time courses of H2 gas evolution over photocatalysts loaded with a Rh cocatalyst 

and heated at different reduction temperatures following impregnation. 

 

 

Figure S8. (a) The effect of the amount of the 0.4 wt% Rh(IMP)/Ga-LTCA photocatalyst on the 

photocatalytic H2 evolution rate. (b) Time courses of H2 gas evolution reactions using different 

amounts of the 0.4 wt% Rh(IMP)/Ga-LTCA photocatalyst. 
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Figure S9. TEM and STEM-EDS mapping of a 0.4 wt% Rh(IMP)/Ga-LTCA sample. 
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Figure S10. Additional HRTEM images of a 0.4 wt% Rh(IMP)/Ga-LTCA sample showing that the 

Rh particles had hemispherical shapes and intimate contact with the Ga-LTCA surface.  
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Figure S11. Additional TEM images of a 1.0 wt% Rh(PD)/Ga-LTCA sample showing that the Rh 

particles were aggregated on the top surfaces of the Ga-LTCA particles. 
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Figure S12. Photograph showing a Ga-LTCA photocatalyst film and associated water contact 

angle (θc). 

 

 

Figure S13. HRTEM image and STEM-EDS mapping of a 1.0 wt% Rh(PD)/Ga-LTCA sample.  
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Figure S14. (a) XPS spectra of Rh species on Ga-LTCA loaded by photodeposition method (PD) 

and the same photocatalyst treated with H2 reduction at 573 K for 1 h (H2 reduced). (b) Time 

courses of H2 gas evolution on Ga-LTCA loaded with a Rh cocatalyst using photodeposition 

(PD) and the same photocatalyst treated with H2 reduction at 573 K for 1 h (H2 reduced). 

The 1.0 wt% Rh(PD)/Ga-LTCA sample was treated with H2 reduction at 573 K for 1 h. As shown 

in the XPS spectra, the H2-reduced sample showed significant metallic Rh0 species with minor 

Rh+ species, which was similar with the XPS data of the Rh(IMP)/Ga-LTCA sample (Figure 2e 

in the main text). Moreover, the H2 reduced sample was significantly improved HER activity 

(1186 µmol/h) compared with original PD sample (130 µmol/h). This result suggests that the 

metallic Rh0 species are important for the improved photocatalytic activity. However, this 

activity is still lower than the HER activity of the 0.4 wt% Rh(IMP)/Ga-LTCA sample (1562 

µmol/h). This is because the Rh loading amount and cocatalyst distribution are also important 

for the photocatalytic performance as is discussed in this work. 
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Figure S15. STEM-EDS mapping analysis of the 0.2 wt% Cr2O3/0.4 wt% Rh(IMP)/Ga-LTCA 

sample showing that Cr was in close proximity to the Rh, suggesting that the photoexcited 

electrons acted on the lateral surfaces of the Ga-LTCA particles. 
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Figure S16. TA kinetic profiles of surviving electrons probed at 5000 cm−1 (2000 nm) in various 

samples under 470 nm excitation (3 mJ pulse−1) for different cocatalysts: bare Ga-LTCA, 0.4 

wt% Pt(IMP)/Ga-LTCA, 0.4 wt% Ru(IMP)/Ga-LTCA and 0.4 wt% Rh(IMP)/Ga-LTCA. The electron 

transfer efficiency increased in the order of Rh > Ru > Pt at the same loading amount (0.4 

wt%). This result is in good agreement with the H2 evolution activity data obtained from Ga-

LTCA loaded with different cocatalysts (Figure S5).  
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Figure S17. TEM images and EDS elemental analysis results for selected areas that confirm 

the Rh/Cr2O3 core-shell structure in a 0.2 wt% Cr2O3/0.4 wt% Rh(IMP)/Ga-LTCA sample. 

 

 

Figure S18. Time courses of H2 gas evolution reactions using the 0.4 wt% Rh(IMP)/Ga-LTCA 

photocatalyst with and without Cr2O3 in a 15 mM aqueous NaI solution under visible light (λ 

> 420 nm). Reaction conditions: photocatalyst 50 mg, NaI aqueous solution (15 mM, 100 mL) 

adjusted to pH 4 by adding a 0.1 M aqueous H2SO4 solution, Ar 5 kPa background pressure.  
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Supporting Table 

Table S1. Comparison of reported hydrogen evolution reaction activities over various 

oxysulfide photocatalysts.  

Photocatalyst 

(Absorption edge) 

Cocatalyst HER activity 

(µmol h-1) 

AQY (%) Reference 

Ga-La5Ti2Cu0.9Ag0.1O7S5  

(700 nm) 

Rh 464 3.1 (420 nm) [1] 

La5Ti2AgO7S5  

(600 nm) 

Pt/NiS 250 No data [2] 

Ga-La5Ti2Cu0.9Ag0.1O7S5  

(700 nm) 

Pt/NiS 130 No data [2] 

La5Ti2AgO7S5  

(600 nm) 

Pt 225 1.2 (420 nm) [3] 

La5Ti2CuO7S5  

(650 nm) 

Pt-PD/NiS 170 1.3 (420 nm) [4] 

La5Ti2CuO7S5  

(650 nm) 

Pt-IMP/NiS 280 1.8 (420 nm) [5] 

Sm2Ti2O5S2  

(650 nm) 

Rh 350 No data [6] 

Ag-Sm2Ti2O5S2  

(650 nm) 

Rh 949 8.8 (440 nm) [7] 

Y2Ti2O5S2  

(650 nm) 

Rh 125 5.3 (420 nm) [8] 

Ga-La5Ti2Cu0.9Ag0.1O7S5  

(700 nm) 

Rh 1562 11.2 (420 nm) This work 
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