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Fig. S1. Experimental program for borax-and-melamine pyrolysis for producing tcBN.
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Fig. S2. EDS mappings of intermediate and tcBN. (a) EDS mapping of the intermediate,
showing the existence of carbon element. (b) EDS mapping of tcBN. Boron and nitrogen
elements emerge at the same place with similar atomic ratio, and they are far stronger than

others, indicating the formation of BN.
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Fig. S3. EDS spectrum of tcBN. The atomic ratio of boron and nitrogen elements approaches

1:1. Other elements are fairly low.
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Fig. S4. XRD patterns of intermediates taken at marked temperatures during heating

borax-and-melamine for synthesis of tcBN.
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Fig. S5. Detailed XRD profiles of key intermediates taken at marked temperatures.
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Fig. S6. TG curves of borax, melamine and borax-and-melamine precursor.
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Fig. S7. Working curves of CR and MG standards for dye adsorption. (a,c) Absorbance
curves of prepared CR and MG aqueous solutions, respectively. (b,d) Working curves fitted by
the absorbance of CR and MG solutions at wavelengths of 496 nm and 632 nm, respectively.
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Fig. S8. Photos of tcBN powder and tcBN monolith, taken before sorption, after sorption
and after regeneration via incineration. (a-c) tcBN powder for CR adsorption test. (d-g) tcBN

monolith for oil absorption test.
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Fig. S9. Sorption kinetics of tcBN monolith on oil. (a) Sketch of the testing equipment.
Ethylene glycol, EG, is used as a model adsorbate. (b) Accumulative weight of adsorbate
absorbed within tcBN vs time. (c) Rate of weight gain of ethylene glycol absorbed within tcBN
vs time.

In the kinetic test, a cylindric tcBN monolith is fixed to the rigid holder. Ethylene glycol
in a beaker approaches slowly until the liquid level covers tcBN. The weight of the whole
system is recorded in real time. The mass of adsorbate absorbed in tcBN, m, is calculated by
the following formula equation,
m=m,—my (D)
where mt is the real-time mass, and mo is the mass at the moment of the sorbent soaking to the

oil. Extensive researches have shown that the liquid sorption kinetics can be described by
7



"sharp-front capillary rise model". Considering gravity effect, the accumulative mass of
absorbed adsorbate is a time-dependent equation, !

m, = a[1 — exp(~bVD)] @)
where ms symbolizes the accumulative mass of absorbed adsorbate per unit contact area, and a,
b are coefficients relating with gravitational limiting sorption and sorptivity. At the beginning
of time, equation (3) can reduce mathematically to be

m, = K/t 3)

where Ks is liquid sorption coefficient. It is further expressed as

Ksng /r%cos% 4)

where p, o and v represent density, surface tension and viscosity of adsorbate. ¢ and 7 represent
accessible porosity and pore tortuosity of sorbent,  is the contact angle between liquid and
sorbent. Ks is an important parameter popularly used in liquid sorption processes. It reflects the
sorption speed of a sorbent on an adsorbate, regardless of gravity effect. Ks is gotten through
fitting the linear region at the beginning of time. Specifically, tcBN has Ks of 0.35 kg m? s/2,
which indubitably indicates the excellent sorption speed of tcBN as compared with activated

carbon (0.008 kg m™? s7/2),
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Fig. S10. Structure models of adsorption of Congo red on BN and graphene. (a,b) Top and
side views of Congo red molecule on BN monolayer. (c,d) Congo red on graphene. The
adsorption energy is defined as Eads = Econ-sub - Econ - Esub, Where Econ-sub, Econ and Esub stand for
the calculated total energy of boron nitride or graphene substrate with Congo red, the isolated

Congo red and the substrate, respectively.
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Fig. S11. XRD patterns of raw tcBN, tcBN after oil absorption and tcBN after

regeneration.



Table S1. Detailed reaction mechanism of heating borax-and-melamine for synthesis of tcBN.

;%Tp' Boron chemical evolution = Nitride chemical evolution | XRD TG evidences
20-200 =Borax — Na,B,0,-5H,0 / Melamine = Borax loses 23wt%
» Na,B,0,-5H,0 — Na,B,0, * Sublimation of melamine Melam- <13f2|(:10|t(|:al mass at
; * Melamine — Cyanamide melem ’
= Na,B,0; is also Na,0-2B,0
310-700 2 o ) ? 28, Melamine — Melam + NH;  adduct It loses 47wt% at
- = B-rich and Na-rich phase 500°C, i.e. all crystal
segregation of Na-B-O *Melam  — Melem + NH; ~ Melem water.
system around 730°C *Melem  — C3N, CaN, * Melamine loses
most of initial mass
C3N4 —C+ N2 + (CN)2 BCaNﬁOy at 380°C,
700-820 - N320'28203 + NHQCN — NaN(CN)2 + BCG Nﬁ OV + CO + NH3 NaN(CN)2 |t polymerizes intO
» 2 Na,0-2B,0, + (7+4a-4y) (CN), = NaOCN ¢ N, at 550°C:
4 NaOCN + 8 BC,N4O, + (10-8y) CO + (5+4a-4B-4y) N, NaCN C,N, decomposes
. BC.N;O, into cyanogen,
TR NaCNO + (CN), — NaCN + CO+ N, ok cyang fregerise, Ng
= NaCNO — Na,CO5; + NaCN + CO+ N, and tiny carbon at
Na,CO4 700°C
= Sublimation of part of NaCN '
= NaCN —>N32C2T+N3T+C+N2T* *
1000 . BNC5 J. Am. Chem. Soc.
*Na,CO3;+C —-Na1+CO1? 1926, 48, 695
" Metall. Mater. Trans. B.
*BCNgO, —BNC;+CO1? 2001, 32B, 17

Table S2. Kinetic constants of adsorption via fitting the experimental dye adsorption from

solution in Figure Sc, g. k1 and k2 are related kinetic parameters.

Pseudo-first-order model Pseudo-second-order model
ki (min™) R? k2 (g mg! min) R?
Congo red 8.39x1072 0.953 4.39x10* 0.985
Methyl green 8.68x107 0.975 4.16x10* 0.994
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Table S3. Comparison of adsorption capacities of porous BN on Congo red.

Synthesis SSA Main Onm
Sample Precursor Dye Ref.
P category (m’g’)  pore type Y mggl) R
Porous BN Non-templated  Boron triox'ide and guanidine 1427 M?:lcropore Congo red 780 2]
method hydrochloride Micropore
Non-templated M
3D BN OR-tempIAtee Boron trioxide and urea 1156 SSOPOTC - congored 718 [3]
method Micropore
F.lower stamen-  Soft-templated  Boric acid and urea with P123 290 Micropore  Congo red 620 (4]
like BN method as template
B id and melami ith
Cheese-like 3D  Hard-templated oron acid anc meiammine wi
a template produced by boron 334 Mesopore  Congo red 307 [5]
C-BN method ) . .
oxide and triethanolamine
Thin-wall Borax- C Thi
ongo is
cellular BN, melamine Borax and melamine 1420 Mesopore g 1096
. red work
tcBN pyrolysis

11



Movie S1. Absorption behavior of pump oil on water using tcBN monolith.

Movie S2. Oil/water separation in a home-made separator using tcBN as

sieve.
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