Supporting Information

Dynamic structural transformation induced by defects in nano-rod FeOOH during electrochemical water splitting

Yitian Hu, Jing zhou, Lili Li, Zhiwei Hu, Taotao Yuan, Chao Jing, Renduo Liu, Shibo Xi, Haiqing Jiang, Jian-Qiang Wang and Linjuan Zhang*

Figure S1. The comparison of overpotential under current density of 10 and 50 mA cm⁻² for FeOOH and D-FeOOH catalysts after OER activation, along with the benchmark IrO₂ reference.

Figure S2. Chronopotentiometric curve of long-term stability for D-FeOOH after activation in 1 M KOH electrolyte at a current density of 10 mA cm⁻².

Figure S3. EDS of the as-prepared FeOOH a) and D-FeOOH b).

Figure S4. TEM of the FeOOH a) and D-FeOOH b) after OER activation.

Figure S5. XRD pattern of the FeOOH and D-FeOOH after OER activation.

Figure S6 The relative energy positions shift at normalized absorption of 0.8 for Fe K-edge XANES, where $Fe_4Nb_2O_9$, Fe_2O_3 and $SrFeO_3$ were used as pure Fe^{2+} , Fe^{3+} and Fe^{4+} references, respectively.

Figure S7 ESR spectra of FeOOH and D-FeOOH.

Figure S8. Comparison of Raman spectra for the FeOOH and D-FeOOH samples before and after OER activation, along with the α -FeOOH and β -FeOOH references for comparison as Ref.^[1]

Figure S9. Fit curves of partial in-situ Raman spectra of D-FeOOH-17 h and FeOOH-40 h.

Figure S10. The configurations of β -FeOOH and cluster vacancies in β -FeOOH (defect@ β -FeOOH), including V_{Fe-O}, V_{Fe-OH}, and V_{Fe-O-OH}. The brown, red, and pink balls represent Fe, O, and H atoms, respectively.

Figure S11. Computed density of states (DOS) of the α -FeOOH and β -FeOOH.

Table S1. The results of High-resolution inductively coupled plasma mass spectroscopy of 3d transition metal elements.

Element Sample	v	Cr	Mn	Со	Ni	Cu	Zn
FeOOH	0.00011%	0.00790%	0.01108%	0.00087%	0.00293%	0.00174%	0
D-FeOOH	0.00284%	0.00842%	0.00799%	0.00155%	0.00591%	0.00385%	0.00135%

Table S2. Comparison of electrochemical activity for OER of recently reported pure FeOOH

Catalyst	Electrolyte	η (mV) 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.	
D-FeOOH after activation	1 М КОН	307	36	This work	
FeOOH NSs	1 M KOH	470	107	[2]	
FeOOH/CFC	1 M KOH	460	65	[3]	
β-like FeOOH	1 M NaOH	490	N.A.	[4]	
FeOOH	1 M KOH	480	N.A.	[5]	
FeOOH-CC	1 M KOH	440	75.31	[6]	
FeOOH powder	1 M KOH	498	131	[7]	
FeOOH	1 M KOH	478	107	[8]	
β-FeOOH	1 M KOH	400	186	[9]	
FeOOH QDs	1 M KOH	490	52.2	[10]	
β-FeOOH	1 M KOH	400ª	163.4	[11]	
FeOOH/CFP	1 M KOH	455ª	131	[12]	
FeOOH/CC	1 M KOH	445ª	N.A.	[13]	
FeOOH@CC	1 M KOH	415ª	49	[14]	
FeOOH	1 M KOH	600ª	57	[14]	
FeOOH	1 M KOH	320 ^a	N.A.	[15]	

^{a)}Overpotentials were estimated from the LSV in the reference studies.

lattice parameters (Å)	β-FeOOH		α-FeOOH		
This mode	a=b	с	а	b	с
This work	10.552	3.072	9.145	10.025	3.043
Ref ¹⁶⁻¹⁸	10.540	3.030	9.028	9.951	3.019
Error	0.11%	1.39%	1.30%	0.74%	0.79%

Table S3. The lattice parameters for the fully relaxed β -FeOOH and α -FeOOH.

References

- [1] J. Hu, S. Li, J. Chu, S. Niu, J. Wang, Y. Du, Z. Li, X. Han, P. Xu, ACS Catalysis
 2019, 9, 10705-10711.
- [2] K. Zhao, X. Ma, S. Lin, Z. Xu, L. Li, ChemistrySelect 2020, 5, 1890-1895.
- [3] X. Yang, B. Xu, S. Zhang, Z. Zhao, Y. Sun, G. Liu, Q. Liu, C. Li, Int. J. Hydrogen Energy 2020, 45, 9546-9554.
- [4] K. Zhu, W. Luo, G. Zhu, J. Wang, Y. Zhu, Z. Zou, W. Huang, *Chem Asian J* 2017, 12, 2720-2726.
- [5] W. Luo, C. Jiang, Y. Li, S. A. Shevlin, X. Han, K. Qiu, Y. Cheng, Z. Guo, W. Huang, J. Tang, J. Mater. Chem. A 2017, 5, 2021-2028.
- [6] H. Meng, Z. Ren, S. Du, J. Wu, X. Yang, Y. Xue, H. Fu, Nanoscale 2018, 10, 10971-10978.
- [7] P. Ma, S. Luo, Y. Luo, X. Huang, M. Yang, Z. Zhao, F. Yuan, M. Chen, J. Ma, J Colloid Interface Sci 2020, 574, 241-250.
- [8] X. Zhang, B. Zhang, S. Liu, H. Kang, W. Kong, S. Zhang, Y. Shen, B. Yang, Appl.

Surf. Sci. 2018, 436, 974-980.

- [9] Y. Liang, Y. Yu, Y. Huang, Y. Shi, B. Zhang, J. Mater. Chem. A 2017, 5, 13336-13340.
- [10] N. Li, S. Wei, Y. Xu, J. Liu, J. Wu, G. Jia, X. Cui, *Electrochim. Acta* 2018, 290, 364-368.
- [11] W. Tang, G. Zhang, Y. Qiu, Int. J. Hydrogen Energy 2020, 45, 28566-28575.
- [12] X. Han, C. Yu, J. Yang, X. Song, C. Zhao, S. Li, Y. Zhang, H. Huang, Z. Liu, H. Huang, X. Tan, J. Qiu, *Small* 2019, 15, 1901015.
- [13] S. Niu, W. J. Jiang, Z. Wei, T. Tang, J. Ma, J. S. Hu, L. J. Wan, *J Am Chem Soc* **2019**, *141*, 7005-7013.
- [14] Y. Zhang, G. Jia, H. Wang, B. Ouyang, R. S. Rawat, H. J. Fan, Mater. Chem. Front. 2017, 1, 709-715.
- [15] J. Lee, H. Lee, B. Lim, J. Ind. Eng. Chem. 2018, 58, 100-104.
- [16] X. Han, C. Yu, J. Yang, X. Song, C. Zhao, S. Li, Y. Zhang, H. Huang, Z. Liu, H. Huang, X. Tan, J. Qiu, Small 2019, 15, 1901015.
- [17] E. Zepeda-Alarcon, H. Nakotte, A. F. Gualtieri, G. King, K. Page, S. C. Vogel, H.-W. Wang, H.-R. Wenk, J. Appl. Cryst., 2014, 47, 1983-1991.
- [18] X. Zhang, L. An, J. Yin, P. Xi, Z. Zheng, Y. Du, Sci. Rep. 2017, 7, 43590.