## **Supplementary Information**

FAPbBr<sub>3</sub> perovskite solar cells with  $V_{OC}$  over 1.5 V by controlled crystal growth using a tetramethylenesulfoxide

Youhei Numata<sup>\*,a</sup> Naoyuki Shibayama<sup>b</sup> and Tsutom Miyasaka<sup>\*,b</sup>

<sup>*a*</sup> Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan

<sup>b</sup> Department of Engineering, Toin University of Yokohama, 1614 Kurgane-cho, Aoba,
Yokohama, Kanagawa 225-8503 Japan.

**Table S1**. Photovoltaic parameters of FAPbBr<sub>3</sub> PSCs with different TMSO concentrations in DMSO solvent. Device architecture: FTO/TiO<sub>2</sub> CL/TiO<sub>2</sub>

| TMSO content<br>in DMSO (%) | scan<br>direction | $J_{\rm SC}$ (mA/cm <sup>2</sup> ) | $V_{\rm OC}$ (V) | FF              | PCE (%)         |
|-----------------------------|-------------------|------------------------------------|------------------|-----------------|-----------------|
| 0                           | forward           | $4.87 \pm 0.16$                    | $1.32 \pm 0.05$  | $0.49\pm0.02$   | $3.15 \pm 0.18$ |
|                             | reverse           | $4.85\pm0.10$                      | $1.31 \pm 0.06$  | $0.54\pm0.01$   | $3.45 \pm 0.19$ |
| 5                           | forward           | $6.01 \pm 0.14$                    | $1.30 \pm 0.03$  | $0.49\pm0.02$   | $3.80 \pm 0.26$ |
|                             | reverse           | $5.78\pm0.06$                      | $1.32 \pm 0.04$  | $0.52 \pm 0.01$ | $3.99 \pm 0.16$ |
| 10                          | forward           | $6.08 \pm 0.14$                    | $1.30 \pm 0.01$  | $0.49\pm0.03$   | $3.91 \pm 0.32$ |
|                             | reverse           | $5.71 \pm 0.10$                    | $1.35 \pm 0.01$  | $0.56\pm0.03$   | $4.28\pm0.26$   |
| 20                          | forward           | $6.31 \pm 0.11$                    | $1.28 \pm 0.02$  | $0.51 \pm 0.01$ | $4.11 \pm 0.20$ |
|                             | reverse           | $6.04 \pm 0.11$                    | $1.31 \pm 0.02$  | $0.54 \pm 0.01$ | $4.25 \pm 0.19$ |

meso/FAPbBr<sub>3</sub>/spiro/Au.



**Fig. S1** (a) *J-V* curves and (b) EQE spectra of FAPbBr<sub>3</sub> PSCs with different TMSO content. Device architecture: FTO/TiO<sub>2</sub> CL/TiO<sub>2</sub> meso/FAPbBr<sub>3</sub>/spiro/Au.

**Note**. Above PSCs were not conducted Li-treatment of TiO<sub>2</sub> mesoporous layer and insertion of PMMA blocking layer.



**Fig. S2** XRD chart of PbBr<sub>2</sub>–TMSO films prepared on Li-treated TiO<sub>2</sub> mesoporous layer; vertical axis was enlarged 100 times from **Fig. 1a**.



**Fig. S3** XRD chart of ground PbBr<sub>2</sub>•TMSO single crystal and PbBr<sub>2</sub> powder. Inset: photograph of PbBr<sub>2</sub>•TMSO single crystals.



**Fig. S4** UV spectra of PbBr<sub>2</sub> films with different concentration of TMSO in DMSO solvent. The PbBr<sub>2</sub> films were prepared on a Li-treated TiO<sub>2</sub> mesoporous film.



**Fig. S5** surface SEM images of FAPbBr<sub>3</sub> films with different concentration of TMSO. The FAPbBr<sub>3</sub> films were prepared on a Li-treated TiO<sub>2</sub> mesoporous film.



**Fig. S6** XRD chart of PbBr<sub>2</sub> films with different concentration of TMSO in DMSO solvent.

| TMSO | $PbBr_2 conc.$ (M) | Scan<br>direction | $J_{\rm SC} ({\rm mA \ cm^{-2}})$ | $V_{\rm OC}$ (V) | FF            | $\eta$ (%)      |
|------|--------------------|-------------------|-----------------------------------|------------------|---------------|-----------------|
| w/o  | 1.0                | forward           | $3.49\pm0.46$                     | $1.42 \pm 0.02$  | $0.44\pm0.04$ | $2.19\pm0.44$   |
|      |                    | reverse           | $3.27\pm0.45$                     | $1.41\pm0.05$    | $0.43\pm0.02$ | $1.98\pm0.37$   |
|      | 1.2                | forward           | $5.55\pm0.15$                     | $1.38\pm0.02$    | $0.60\pm0.03$ | $4.59\pm0.28$   |
|      |                    | reverse           | $5.36\pm0.14$                     | $1.41\pm0.02$    | $0.56\pm0.04$ | $4.21\pm0.36$   |
|      | 1.3                | forward           | $5.56\pm0.34$                     | $1.35\pm0.02$    | $0.61\pm0.04$ | $4.63\pm0.49$   |
|      |                    | reverse           | $5.29\pm0.34$                     | $1.36\pm0.02$    | $0.66\pm0.04$ | $4.73\pm0.35$   |
|      | 1.4                | forward           | $5.74\pm0.38$                     | $1.35\pm0.02$    | $0.57\pm0.04$ | $4.48\pm0.57$   |
|      |                    | reverse           | $5.35\pm0.28$                     | $1.34\pm0.04$    | $0.68\pm0.08$ | $4.86\pm0.72$   |
| with | 1.2                | forward           | $6.41 \pm 0.13$                   | $1.45 \pm 0.02$  | $0.59\pm0.03$ | $5.50 \pm 0.38$ |
|      |                    | reverse           | $6.12\pm0.14$                     | $1.47\pm0.02$    | $0.61\pm0.04$ | $5.50\pm0.46$   |
|      | 1.3                | forward           | $6.53\pm0.23$                     | $1.43\pm0.03$    | $0.60\pm0.06$ | $5.62\pm0.73$   |
|      |                    | reverse           | $6.17\pm0.31$                     | $1.47\pm0.02$    | $0.66\pm0.05$ | $5.95\pm0.58$   |
|      | 1.4                | forward           | $7.05\pm0.13$                     | $1.13\pm0.07$    | $0.48\pm0.08$ | $3.81\pm0.82$   |
|      |                    | reverse           | $6.53\pm0.36$                     | $1.24\pm0.08$    | $0.59\pm0.04$ | $4.72\pm0.45$   |
|      | 1.5                | forward           | $6.93\pm0.46$                     | $1.08\pm0.11$    | $0.48\pm0.09$ | $3.60 \pm 1.02$ |
|      |                    | reverse           | $6.47\pm0.56$                     | $1.18\pm0.07$    | $0.59\pm0.07$ | $4.49\pm0.73$   |

Table S2. Photovoltaic parameters of FAPbBr<sub>3</sub> PSCs with and w/o TMSO

Cell area:  $0.25 \text{ cm}^2 (5 \times 5 \text{ mm}^2)$ , aperture area was defined with black metal mask. The parameters are average values of  $12 \sim 18$  cells



Fig. S7 Cross-sectional images of FAPbBr<sub>3</sub> (with TMSO) cells.



**Fig. S8** Aging effect of FAPbBr<sub>3</sub> PSC based on a 1.3 M PbBr<sub>2</sub>–TMSO precursor film stored under dark and dry condition for 3 weeks.

**Table S3** Summary of reported high-voltage Br-rich 3-D perovskite-based solar cellswith  $V_{\rm OC}$  over 1.4 V

| Device architecture                                                                                                   | $V_{\rm OC}\left({ m V} ight)$ | $J_{\rm SC}$ (mA/cm <sup>2</sup> ) | FF    | η (%) | method   | Ref.         |  |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|-------|-------|----------|--------------|--|
| MAPbBr <sub>3</sub>                                                                                                   |                                |                                    |       |       |          |              |  |
| FTO/c-TiO <sub>2</sub> /MAPbBr <sub>3</sub> / Carbon                                                                  | 1.535                          | 7.10                               | 0.70  | 7.63  | one-step | 1            |  |
| FTO/bl-TiO2/m-TiO2/<br>MAPbBr3/PIF8-TAA/Au                                                                            | 1.40                           | 6.1                                | 0.79  | 6.7   | one-step | 2            |  |
| FTO/NiOx/MoOx/<br>MAPbBr3/ZrO/PC61BM/Al                                                                               | 1.653                          | 7.72                               | 0.79  | 10.08 | one-step | 3            |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>MAPbBr <sub>3</sub> /PTAA/Au                                          | 1.4                            | 6.4                                | 74    | 6.6   | two-step | 4            |  |
|                                                                                                                       |                                | FAPbBr                             | 3     |       |          |              |  |
| ITO/P3CT/FAPbBr <sub>3</sub> /<br>PCBM/C <sub>60</sub> /BCP/Cu                                                        | 1.49                           | 8.98                               | 66.74 | 8.93  | two-step | 5            |  |
| FTO/SnO <sub>2</sub> /FAPbBr <sub>3</sub> /spiro/Au                                                                   | 1.552                          | 8.94                               | 0.76  | 10.61 | two-step | 6            |  |
| FTO/c-TiO <sub>2</sub> /Li-m-TiO <sub>2</sub> /<br>FAPbBr <sub>3</sub> /spiro/Au                                      | 1.53                           | 7.3                                | 0.71  | 8.2   | two-step | 7            |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>FAPbBr <sub>3</sub> /spiro/Au                                         | 1.42                           | 6.8                                | 72    | 7.0   | two-step | 8            |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /FAPbBr <sub>3</sub> /<br>SO7/Au                                           | 1.50                           | 6.9                                | 69    | 7.1   | two-step | 9            |  |
| FTO/NiO/FAPbBr <sub>3</sub> /Mg-ZnO/<br>PCBM/BCP/Ag                                                                   | 1.44                           | 8.92                               | 0.71  | 9.06  | one-step | 10           |  |
| FTO/TiO <sub>2</sub> /Li-m-TiO <sub>2</sub> /FAPbBr <sub>3</sub><br>/PMMA/spiro/Au<br>cell area: 0.25 mm <sup>2</sup> | 1.53                           | 6.96                               | 0.74  | 7.88  | two-step | This<br>work |  |
|                                                                                                                       |                                | CsPbBr                             | 3     | I     | I        |              |  |
| FTO/SnO <sub>2</sub> /GQDs/<br>CsPbBr <sub>3</sub> /Carbon                                                            | 1.522                          | 7.91                               | 78.4  | 9.51  | two-step | 11           |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>Sm-CsPbBr <sub>3</sub> /Carbon                                        | 1.594                          | 7.48                               | 85.1  | 10.14 | two-step | 12           |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /Carbon                                           | 1.584                          | 7.42                               | 82.11 | 9.65  | two-step | 13           |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /Carbon                                           | 1.432                          | 7.86                               | 81    | 6.78  | two-step | 14           |  |
| FTO/c-TiO <sub>2</sub> /Li-m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /spiro/Au                                      | 1.45                           | 5.97                               | 70    | 6.19  | two-step | 15           |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /spiro/Au                                         | 1.43                           | 8.85                               | 0.62  | 7.86  | two-step | 16           |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>m-ZrO <sub>2</sub> /CsPbBr <sub>3</sub> /Carbon                       | 1.44                           | 7.75                               | 73.52 | 8.19  | two-step | 17           |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /P3HT-ZnPc/ Carbon                                | 1.578                          | 7.652                              | 83.06 | 10.03 | two-step | 18           |  |
| FTO/ZnO/<br>CsPbBr <sub>3</sub> -CsPb <sub>2</sub> Br <sub>5</sub> /spiro/Au                                          | 1.43                           | 6.17                               | 77.2  | 6.31  | two-step | 19           |  |
| ITO/c-TiO <sub>2</sub> /CsPbBr <sub>3</sub> / Carbon                                                                  | 1.51                           | 7.3                                | 0.75  | 8.3   | mist-CVD | 20           |  |

| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> -L-lysine/Carbon                                             | 1.565 | 7.64  | 81.0  | 9.68  | two-step     | 21 |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------------|----|--|
| FTO/c-TiO <sub>2</sub> /Sb-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /Carbon                                                     | 1.654 | 6.70  | 80.4  | 8.91  | two-step     | 22 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPb <sub>0.97</sub> Sr <sub>0.03</sub> Br <sub>3</sub> /Carbon                  | 1.54  | 7.71  | 81.1  | 9.63  | two-step     | 23 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPb <sub>0.97</sub> Tb <sub>0.03</sub> Br <sub>3</sub> /SnS:ZnS/<br>NiOx/Carbon | 1.57  | 8.21  | 79.6  | 10.26 | two-step     | 24 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /MnS/Carbon                                                  | 1.52  | 8.28  | 0.83  | 10.45 | two-step     | 25 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /Carbon-MWCNT                                                | 1.431 | 6.84  | 0.78  | 7.62  | two-step     | 26 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /[BMMIM]Cl/ Carbon                                           | 1.61  | 7.45  | 83    | 9.92  | two-step     | 27 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /<br>CsPbBr <sub>3</sub> /Carbon                                                      | 1.458 | 8.12  | 82.1  | 9.72  | two-step     | 28 |  |
| ITO/NiMgOx/PVP/<br>CsPbBr3:AVAB/<br>CdSe QDs/ZnO/Al                                                                              | 1.73  | 3.5   | N/A   | N/A   | two-step     | 29 |  |
| FTO/L-TiO <sub>2</sub> :MoSe <sub>2</sub> /<br>CsPbBr <sub>3</sub> /Carbon                                                       | 1.615 | 7.88  | 78.7  | 10.02 | two-step     | 30 |  |
| FTO/c-TiO <sub>2</sub> /m-TiO <sub>2</sub> /GQDs/<br>CsPbBr <sub>3</sub> /CISZ-QD/Carbon                                         | 1.522 | 7.35  | 84.3  | 9.43  | two-step     | 31 |  |
| FTO/N-TiO <sub>2</sub> -NRA/<br>CsPbBr <sub>3</sub> /Carbon                                                                      | 1.58  | 6.55  | 81.96 | 8.50  | two-step     | 32 |  |
| FTO/TiO <sub>2</sub> /CsPbBr <sub>3</sub> QDs/<br>PTB7/MoO <sub>3</sub> /Ag                                                      | 1.61  | 3.5   | 75.95 | 4.28  | QD spin-coat | 33 |  |
| CsPbI <sub>2</sub> Br                                                                                                            |       |       |       |       |              |    |  |
| ITO/SnO <sub>2</sub> /SnOx/CsPbI <sub>2</sub> Br/<br>poly(DTSTPD-r-BThTPD)/Au                                                    | 1.41  | 14.25 | 0.77  | 15.53 | one-step     | 34 |  |
| ITO/SnO <sub>2</sub> /SnOx/CsPbI <sub>2</sub> Br/<br>PDTDT/Au                                                                    | 1.42  | 15.02 | 81.29 | 17.36 | one-step     | 35 |  |

## References

- Y. Liang, Y. Wang, C. Mu, S. Wang, X. Wang, D. Xu and L. Sun, *Adv. Energy Mater.*, 2018, 8, 1701159.
- 2 S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo and S. Il Seok, *Energy Environ. Sci.*, 2014, 7, 2614–2618.
- X. Hu, X. F. Jiang, X. Xing, L. Nian, X. Liu, R. Huang, K. Wang, H. L. Yip and
   G. Zhou, *Sol. RRL*, 2018, 2, 1800083.
- M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes and D. Cahen, J. Phys. Chem. Lett., 2016, 7, 167–172.
- S. Li, C. Deng, L. Tao, Z. Lu, W. Zhang and W. Song, J. Phys. Chem. C, 2021, 125, 12551–12559.

- Y. Zhang, Y. Liang, Y. Wang, F. Guo, L. Sun and D. Xu, ACS Energy Lett., 2018, 3, 1808–1814.
- N. Arora, M. I. Dar, M. Abdi-Jalebi, F. Giordano, N. Pellet, G. Jacopin, R. H.
   Friend, S. M. Zakeeruddin and M. Grätzel, *Nano Lett.*, 2016, 16, 7155–7162.
- N. Arora, M. I. Dar, M. Hezam, W. Tress, G. Jacopin, T. Moehl, P. Gao, A. S.
   Aldwayyan, B. Deveaud, M. Grätzel and M. K. Nazeeruddin, *Adv. Funct. Mater.*, 2016, 26, 2846–2854.
- 9 N. Arora, S. Orlandi, M. I. Dar, S. Aghazada, G. Jacopin, M. Cavazzini, E. Mosconi, P. Gratia, F. De Angelis, G. Pozzi, M. Graetzel and M. K. Nazeeruddin, *ACS Energy Lett.*, 2016, 1, 107–112.
- C. Hu, S. B. Shivarudraiah, H. H. Y. Sung, I. D. Williams, J. E. Halpert and S. Yang, *Sol. RRL*, 2021, 5, 2000712.
- Y. Zhao, J. Zhu, B. He and Q. Tang, ACS Appl. Mater. Interfaces, 2021, 13, 11058–11066.
- J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He and Q. Tang, *Adv. Energy Mater.*, 2018, 8, 1802346.
- 13 J. Zhu, B. He, Z. Gong, Y. Ding, W. Zhang, X. Li, Z. Zong, H. Chen and Q. Tang, *ChemSusChem*, 2020, 1834–1843.
- 14 J. Ding, Y. Zhao, J. Duan, B. He and Q. Tang, *ChemSusChem*, 2018, 11, 1432–1437.
- 15 P. Yadav, M. H. Alotaibi, N. Arora, M. I. Dar, S. M. Zakeeruddin and M. Grätzel, *Adv. Funct. Mater.*, 2018, 28, 1706073.
- 16 X. Wang, S. Abbasi, D. Zhang, J. Wang, Y. Wang, Z. Cheng, H. Liu and W. Shen, ACS Appl. Mater. Interfaces, 2020, 12, 50455–50463.
- I. Poli, J. Baker, J. McGettrick, F. De Rossi, S. Eslava, T. Watson and P. J. Cameron, J. Mater. Chem. A, 2018, 6, 18677–18686.
- 18 Y. Liu, B. He, J. Duan, Y. Zhao, Y. Ding, M. Tang, H. Chen and Q. Tang, J. Mater. Chem. A, 2019, 7, 12635–12644.
- 19 X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang and S. F. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 7145–7154.
- Y. Haruta, T. Ikenoue, M. Miyake and T. Hirato, *ACS Appl. Energy Mater.*, 2020,
   3, 11523–11528.

- 21 W. Zhang, X. Liu, B. He, J. Zhu, X. Li, K. Shen, H. Chen, Y. Duan and Q. Tang, ACS Appl. Mater. Interfaces, 2020, 12, 36092–36101.
- Y. Xu, J. Duan, X. Yang, J. Du, Y. Wang, Y. Duan and Q. Tang, *J. Mater. Chem. A*, 2020, 8, 11859–11866.
- Y. Zhao, Y. Wang, J. Duan, X. Yang and Q. Tang, J. Mater. Chem. A, 2019, 7, 6877–6882.
- H. Yuan, Y. Zhao, J. Duan, Y. Wang, X. Yang and Q. Tang, *J. Mater. Chem. A*, 2018, 6, 24324–24329.
- 25 X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu and J. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 29746–29752.
- 26 G. Liao, Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He and Q. Tang, *Dalt. Trans.*, 2018, 47, 15283–15287.
- 27 W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu, Y. Ding, H. Chen and Q. Tang, ACS Appl. Mater. Interfaces, 2020, 12, 4540–4548.
- 28 J. Duan, Y. Zhao, B. He and Q. Tang, Angew. Chemie Int. Ed., 2018, 57, 3787–3791.
- 29 D. Zhou, J. Huang, H. Yan, J. Zhang, L. Lu, P. Xu and G. Li, ACS Appl. Mater. Interfaces, 2020, 12, 50527–50533.
- 30 Q. Zhou, J. Du, J. Duan, Y. Wang, X. Yang, Y. Duan and Q. Tang, J. Mater. Chem. A, 2020, 8, 7784–7791.
- 31 J. Duan, T. Hu, Y. Zhao, B. He and Q. Tang, Angew. Chemie Int. Ed., 2018, 57, 5746–5749.
- 32 M. Wang, J. Duan, J. Du, X. Yang, Y. Duan, T. Zhang and Q. Tang, *ACS Appl. Mater. Interfaces*, 2021, 10, 12091–12098.
- 33 X. Zhang, Y. Qian, X. Ling, Y. Wang, Y. Zhang, J. Shi, Y. Shi, J. Yuan and W. Ma, ACS Appl. Mater. Interfaces, 2020, 12, 27307–27315.
- Z. Guo, A. K. Jena, I. Takei, G. M. Kim, M. A. Kamarudin, Y. Sanehira, A. Ishii,
  Y. Numata, S. Hayase and T. Miyasaka, *J. Am. Chem. Soc.*, 2020, 142,
  9725–9734.
- 35 Z. Guo, A. K. Jena, I. Takei, M. Ikegami, A. Ishii, Y. Numata, N. Shibayama and T. Miyasaka, *Adv. Funct. Mater.*, 2021, **31**, 2103614.