

Influence of Intrinsic Defects on Structure and Dynamics of Mixed Pb-Sn Perovskite: First-Principles DFT and NAMD Simulations

Qi Liu^a, Akang Li^a, WeiBin Chu^b, Oleg V. Prezhdo^{b,*} and WanZhen Liang^{a,*}

^a*State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China*

^b*Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States; Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States*

E-mail: prezhdo@usc.edu,liangwz@xmu.edu.cn

Table S1: The main geometric parameters and DFEs of mix Pb-Sn perovskite $\text{MASn}_{0.03125}\text{Pb}_{0.96875}\text{I}_3$ with and without defects. Notice that the defect-induced geometric data are only available for the defect-surrounded structures.

Structures	pristine	V_{Sn}	V_{Pb}	I_i
$d_{\text{Sn}-I}/\text{\AA}$	3.157	3.119	3.117	3.081
$d_{\text{Pb}-I}/\text{\AA}$	3.202	3.206	3.212	3.204
$\min(\angle \text{M-X-M})^\circ$	143.3	145.3	148.0	106.3
DFE/(eV/cell)	-	+0.0934	+0.0907	+0.0653

*To whom correspondence should be addressed

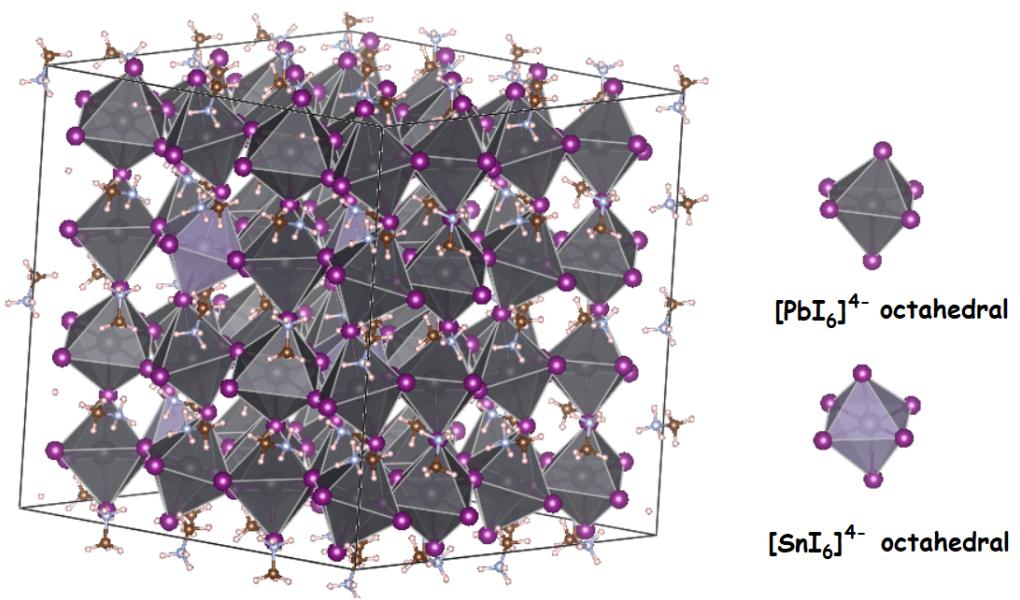
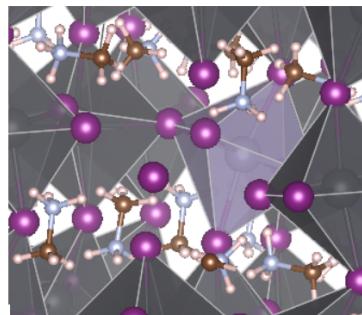
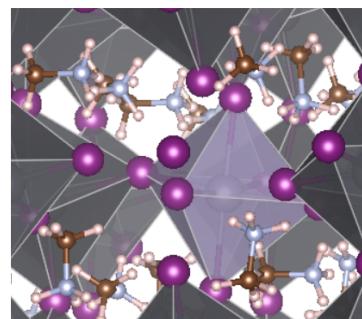




Figure S1: (a) Optimized alternative structures and (b) sketchmap of the MASN_{0.03125}Pb_{0.96875}I₃ perovskite without defects.

a)

b)

c)

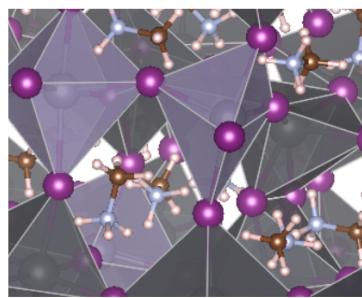


Figure S2: Optimized defect-bearing (a) V_{Pb} (b) V_{Sn} and (c) i_I structure in $MASn_{0.03125}Pb_{0.96875}I_3$ lattice.

Figure S3: Projected density-of-states of the pristine and defect-bearing $\text{MA}_2\text{SnPbI}_6$ perovskites calculated with PBE+SOC.

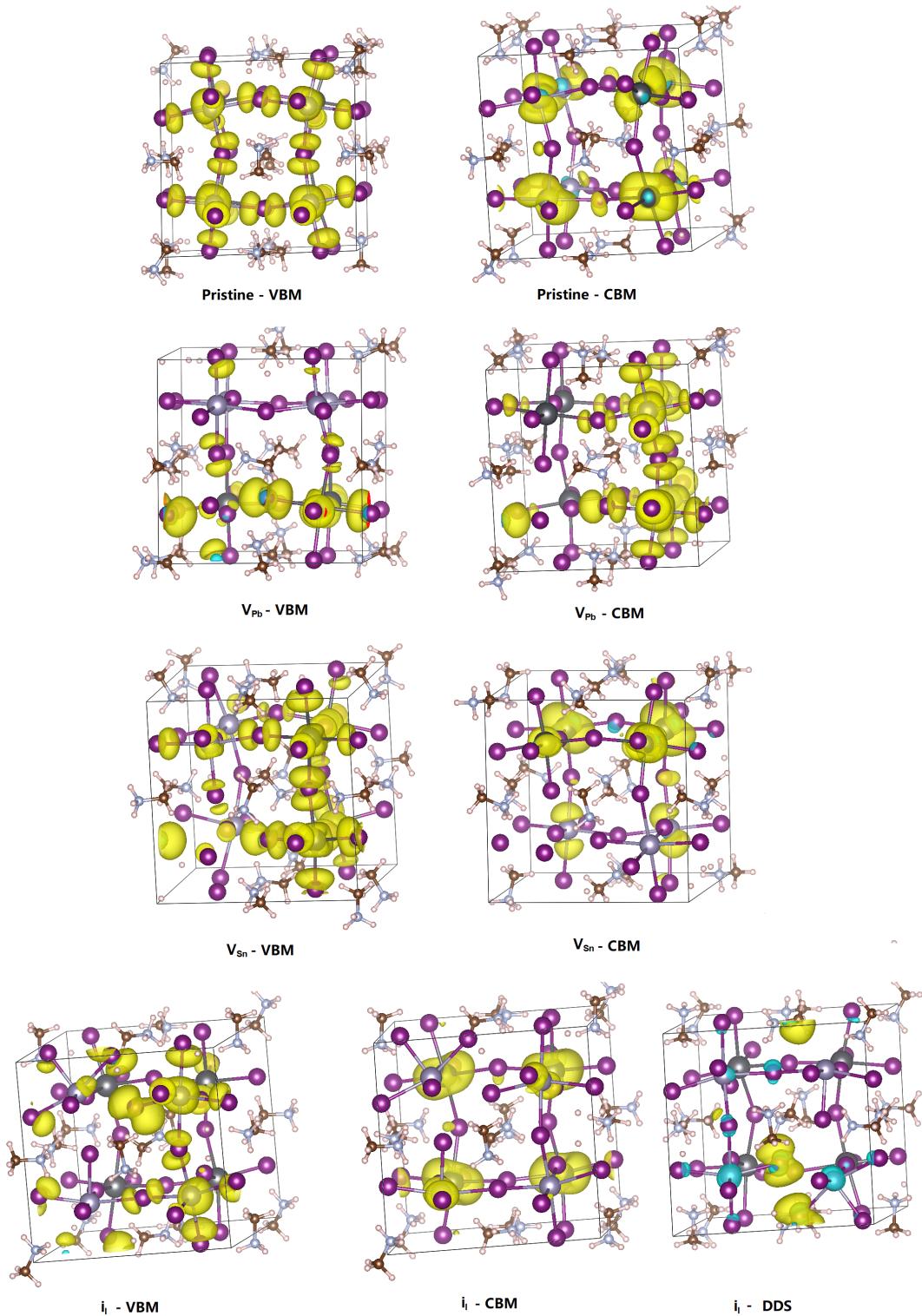


Figure S4: Charge distributions of the key states in the pristine and defect-bearing $\text{MA}_2\text{SnPbI}_6$ perovskites calculated with PBE+SOC.

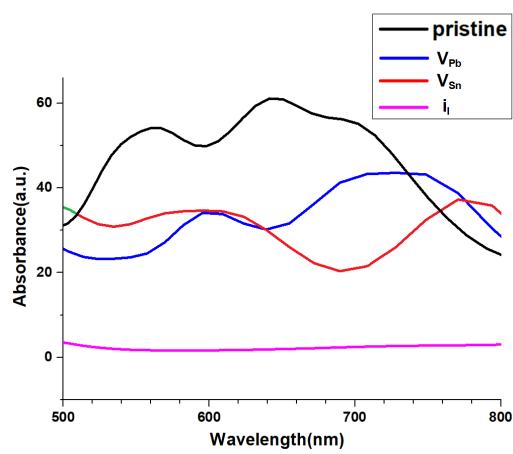


Figure S5: Calculated absorption spectra of the pristine and defect-bearing $\text{MA}_2\text{SnPbI}_6$ perovskite in visible region.

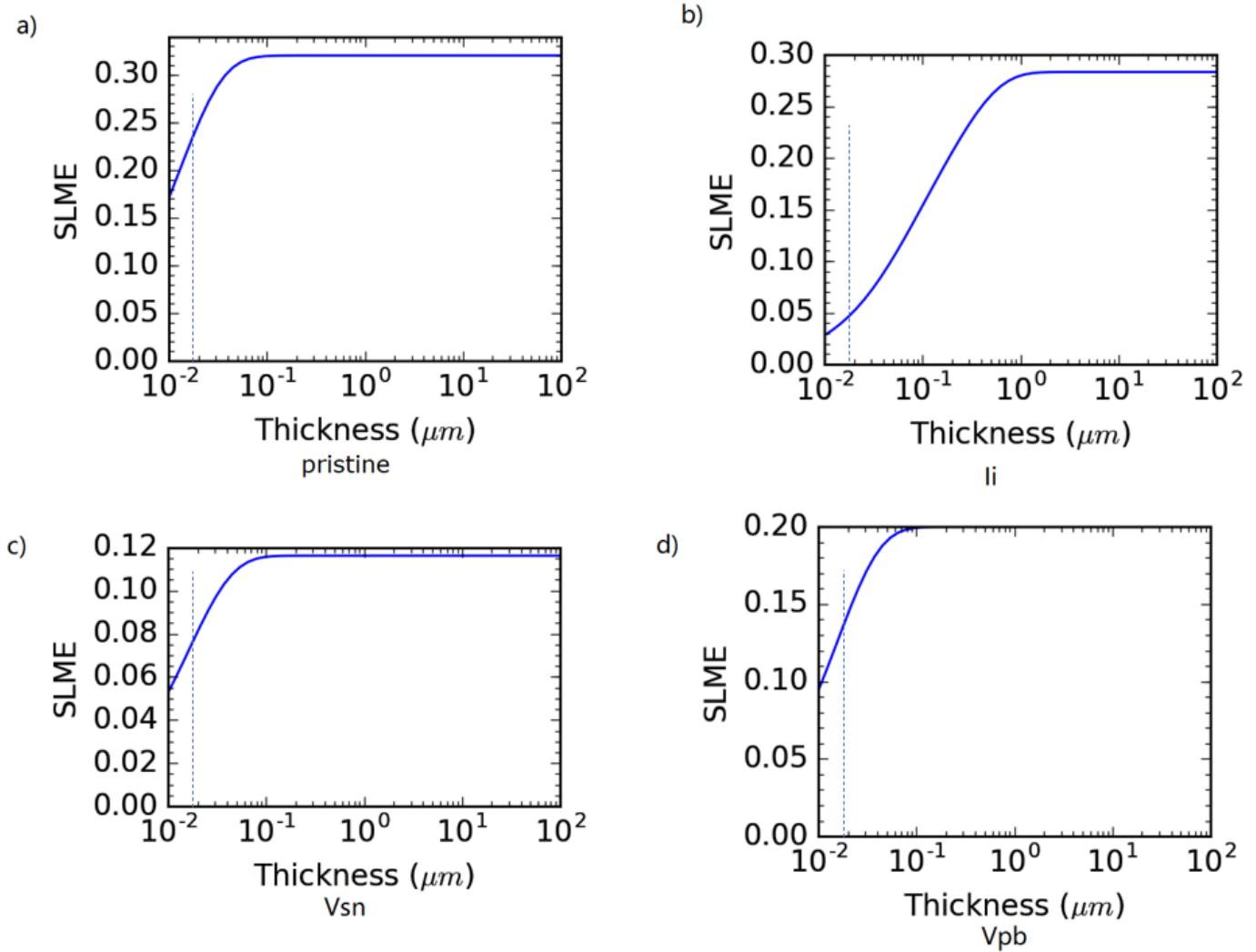


Figure S6: Calculated spectral-limited maximum efficiency of the pristine and defect-bearing $\text{MA}_2\text{SnPbI}_6$ perovskites.

pristine	vbm-5	vbm-4	vbm-3	vbm-2	vbm-1	vbm	cbm	cbm+1	cbm+2	cbm+3	cbm+4
vbm-5	0	35.902	9.5771	4.3208	2.6885	1.5663	0.5137	0.4358	0.5154	0.5139	0.5077
vbm-4	35.902	0	31.368	6.4004	3.4574	2.0092	0.4321	0.4635	0.549	0.4646	0.4961
vbm-3	9.5771	31.368	0	28.02	5.2666	2.5546	0.4521	0.5757	0.5448	0.5885	0.5441
vbm-2	4.3208	6.4004	28.02	0	21.784	4.49	0.5519	0.6068	0.6815	0.6022	0.5825
vbm-1	2.6885	3.4574	5.2666	21.784	0	18.986	0.5143	0.5831	0.7014	0.7086	0.7109
vbm	1.5663	2.0092	2.5546	4.49	18.986	0	0.5422	0.6074	0.6435	0.7191	0.617
cbm	0.5137	0.4321	0.4521	0.5519	0.5143	0.5422	0	22.831	6.945	3.7015	2.8816
cbm+1	0.4358	0.4635	0.5757	0.6068	0.5831	0.6074	22.831	0	31.344	7.4924	4.617
cbm+2	0.5154	0.549	0.5448	0.6815	0.7014	0.8435	6.945	31.344	0	34.46	8.1881
cbm+3	0.5139	0.4646	0.5885	0.6022	0.7086	0.7191	3.7015	7.4924	34.46	0	33.848
cbm+4	0.5077	0.4961	0.5441	0.5825	0.7109	0.617	2.8816	4.617	8.1881	33.848	0

V(Pb)	vbm-4	vbm-3	vbm-2	vbm-1	vbm	cbm	cbm+1	cbm+2	cbm+3	cbm+4	cbm+5
vbm-4	0	37.255	5.9932	3.1349	1.0337	0.5232	0.6704	0.6561	0.6027	0.6305	0.5243
vbm-3	37.255	0	22.812	5.511	1.1743	0.6111	0.5605	0.6437	0.5341	0.5197	0.6219
vbm-2	5.9932	22.812	0	30.113	1.6419	0.5599	0.5427	0.6466	0.7703	0.672	0.6671
vbm-1	3.1349	5.511	30.113	0	2.1693	0.4834	0.6544	0.5994	0.5372	0.5711	0.5767
vbm	1.0337	1.1743	1.6419	2.1693	0	0.6533	0.6126	0.7148	0.6241	0.5961	0.5936
cbm	0.5232	0.6111	0.5599	0.4834	0.6533	0	15.981	4.7635	2.0771	1.6992	1.2438
cbm+1	0.6704	0.5605	0.5427	0.6544	0.6126	15.981	0	22.62	5.6193	4.0108	2.362
cbm+2	0.6561	0.6437	0.6466	0.5994	0.7148	4.7635	22.62	0	29.322	8.147	4.9664
cbm+3	0.6027	0.5341	0.7703	0.5372	0.6241	2.0771	5.6193	29.322	0	34.812	7.9962
cbm+4	0.6305	0.5197	0.672	0.5711	0.5961	1.6992	4.0108	8.147	34.812	0	27.47
cbm+5	0.5243	0.6219	0.6671	0.5767	0.5936	1.2438	2.362	4.9664	7.9962	27.47	0

l(l)	vbm-7	vbm-6	vbm-5	vbm-4	vbm-3	vbm-2	vbm-1	vbm	tr	cbm	cbm+1
vbm-7	0	59.408	15.248	7.2117	4.1297	2.8308	1.8272	1.5081	0.8275	0.328	0.3008
vbm-6	59.408	0	49.234	11.847	5.9334	3.2885	1.9193	1.7469	0.8102	0.3249	0.3264
vbm-5	15.248	49.234	0	40.367	10.236	4.0499	2.2821	1.5671	1.0219	0.3498	0.3499
vbm-4	7.2117	11.847	40.367	0	24.25	5.8946	2.8497	2.0329	1.0304	0.364	0.3619
vbm-3	4.1297	5.9334	10.236	24.25	0	20.666	3.4127	2.6745	1.1727	0.3269	0.3718
vbm-2	2.8308	3.2885	4.0499	5.8946	20.666	0	8.4177	4.2195	1.3354	0.3954	0.3806
vbm-1	1.8272	1.9193	2.2821	2.8497	3.4127	8.4177	0	29.992	1.9649	0.4422	0.439
vbm	1.5081	1.7469	1.5671	2.0329	2.6745	4.2195	29.992	0	2.2713	0.5183	0.5432
tr	0.8275	0.8102	1.0219	1.0304	1.1727	1.3354	1.9649	2.2713	0	0.7631	0.7622
cbm	0.328	0.3249	0.3498	0.364	0.3269	0.3954	0.4422	0.5183	0.7631	0	22.468
cbm+1	0.3008	0.3264	0.3499	0.3619	0.3718	0.3806	0.439	0.5432	0.7622	22.468	0

V(Sn)	vbm-5	vbm-4	vbm-3	vbm-2	vbm-1	vbm	cbm	cbm+1	cbm+2	cbm+3	cbm+4
vbm-5	0	31.913	8.1234	2.8581	1.1803	0.7704	0.3522	0.4049	0.4311	0.3571	0.3967
vbm-4	31.913	0	26.892	4.4115	1.2939	0.3466	0.3896	0.448	0.4888	0.4314	0.4466
vbm-3	8.1234	26.892	0	11.578	1.3627	1.2927	0.5447	0.6203	0.5651	0.4769	0.4971
vbm-2	2.8581	4.4115	11.578	0	3.4393	2.0326	0.5164	0.4742	0.5403	0.4697	0.5961
vbm-1	1.1803	1.2939	1.3627	3.4393	0	7.6303	0.7924	0.7367	0.7342	0.6335	0.6403
vbm	0.7704	0.9466	1.2927	2.0326	7.6303	0	1.2078	1.0741	0.8978	0.6664	0.7397
cbm	0.3522	0.3896	0.5447	0.5164	0.7924	1.2078	0	16.986	3.2859	2.2332	1.3488
cbm+1	0.4049	0.448	0.6203	0.4742	0.7367	1.0741	16.986	0	15.194	2.9743	1.8412
cbm+2	0.4311	0.4888	0.5651	0.5403	0.7342	0.8978	3.2859	15.194	0	7.5185	2.9784
cbm+3	0.3571	0.4314	0.4769	0.4697	0.6335	0.6664	2.2332	7.5185	0	15.929	0
cbm+4	0.3967	0.4466	0.4971	0.5961	0.6403	0.7397	1.3488	1.8412	2.9784	15.929	0

Figure S7: Calculated non-adiabatic coupling matrices of the pristine and defect-bearing $\text{MA}_2\text{SnPbI}_6$ perovskites.

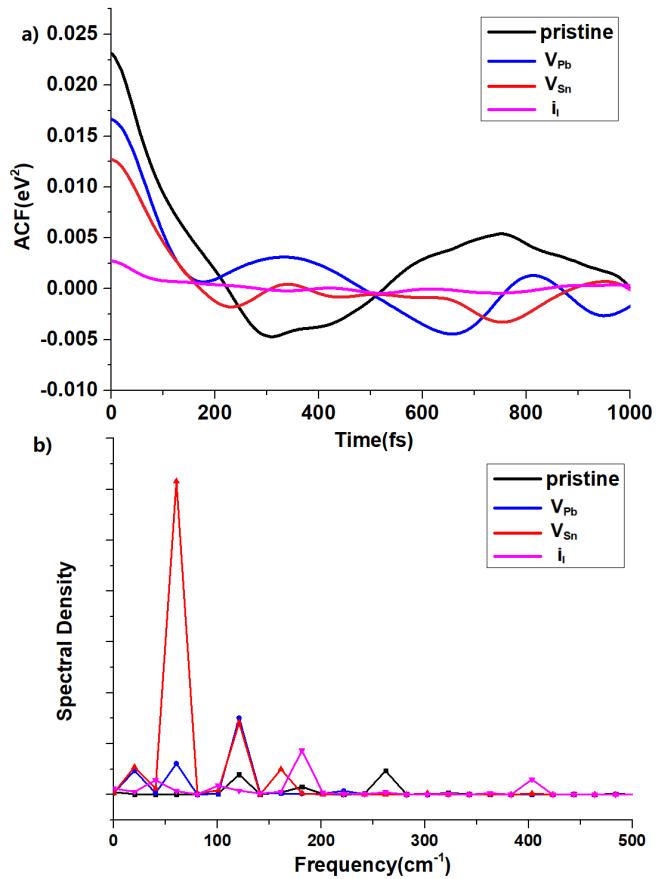


Figure S8: Calculated (a) unnormalized auto-correlation functions and (b) spectral densities of the pristine and defect-bearing $\text{MA}_2\text{SnPbI}_6$ perovskites.