Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Molybdenum sulfo-oxide/cobalt oxysulfide Z-scheme heterojunction catalyst for efficient photocatalytic hydrogen production and pollutants reduction

Qinhan Wu¹, Adugna Boke Abdeta¹, Dong-Hau Kuo^{2,*}, Hanya Zhang¹, Qingxin Lu¹, Jubin Zhang^{1,*}, Osman Ahmed Zelekew³, Mengistu Tadesse Mosisa¹, Jinguo Lin^{1,*}, Xiaoyun Chen^{1,*}

¹College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

²Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei

10607, Taiwan

³Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia

*Corresponding author

E-mail address: <u>dhkuo@mail.ntust.edu.tw</u> (D.-H. Kuo)

E-mail address: <u>zhangjubinfzu@163.com (</u>J. B. Zhang)

E-mail address: <u>fjlinjg@126.com</u> (J. G. Lin)

E-mail address: <u>fjchenxy@126.com</u> (X. Y. Chen)

Fig. S1 (a) Survey spectra and high resolution XPS spectra of (b) Mo3d, (c) O1s, and (d) S2p of Mo(S,O).

Fig. S2 (a) Survey spectra and high resolution XPS spectra of (b) Co2p, (c) O1s, and (d) S2p of Co(O,S).

Fig. S3 (a) XRD diffraction pattern of Mo(S,O) and the Mo_4O_{11} standard of PDF 86-1269. (b) XRD

diffraction pattern of Co(O,S) and the Co₉S₈ standard of PDF 73-1442.

Fig. S4 SEM images of MoCoOS-1, MoCoOS-2, MoCoOS-3, and MoCoOS-4.

Fig. S5 The $(\alpha hv)^{1/2}$ -hv plots from the ultraviolet absorption spectra.

Fig. S6 (a) UV-Vis absorption spectra and (b) the $(\alpha hv)^2$ -hv plots of Mo(S,O) and Co(O,S) from the UV-Vis absorption spectra.

Fig. S7 Mott-Schottky curves of (a) Mo(S,O) and (b) Co(O,S).

Fig. S8 (a) The UPS spectrum and (b) XPS-VB spectrum of Mo(S,O). (c) The UPS spectrum and (d)

XPS-VB spectrum of Co(O,S).

Fig. S9 The current density plots of (a) Mo(S,O) and (b) Co(O,S) catalysts under different scan rates.

Fig. S10 Hydrogen production of MoCoOS, Mo(S,O), Co(O,S), Mo(S,O)||Co(O,S)| and P25-TiO₂ catalysts.

Fig. S11 (a)-(e) Reduction of 4-NP, MO, MB, RhB, and Cr^{6+} by MoCoOS-2 under different pH conditions. (f) The time to complete reduction of 4-NP, MO, MB, RhB, and Cr^{6+} by MoCoOS-2 under different pH conditions.

	Elem	ents pe	rcentag	e (%)	O p	ercentage	e (%)	Crysta (ni	l size * m)	S _{BET}	<i>n</i> [Co(O,S)]/
Catalyst	Mo	Co	0	S	O _{Lattice}	O _{Vacancy}	O _{Vacancy} / O _{Lattice}	Mo(S,O)	Co(O,S)	(m ² /g)	n[Co(O,S)]+n[Mo(S,O)]
MoCoOS-1	22.98	8.42	57.35	11.25	81.86	18.14	13.82	33.7		8.8	0.281
MoCoOS-2	18.12	12.56	55.51	13.81	81.54	18.46	22.64	33.3	11.7	8.5	0.394
MoCoOS-3	15.38	13.53	58.84	12.25	82.76	17.24	17.98	67.6	5.5	7.7	0.448
MoCoOS-4	14.75	22.76	41.69	20.80	83.43	16.57	17.05	64.1	8.7	7.4	0.585
MoCoOS-2 after reaction	16.21	10.31	53.21	14.84	82.27	17.73	21.55	34.9	12.3		
Mo(S,O)	29.77		65.3	4.93	96.85	3.15	3.25	39.9		2.8	
Co(O,S)		45.54	9.76	44.70	95.49	4.51	4.72		6.2	20.9	

Table S1 XPS composition, crystal size and S_{BET} analyses of Mo(S,O), Co(O,S), and MoCoOS

catalysts

Note:* Crystal size of Mo(S,O) was calculated by (112), (-106) and (114) planes. Crystal size of

Co(O,S) was calculated by (311) and (222) planes.

Catalwat	Elements percentage (%)						
Catalyst	Мо	Со	0	S			
MoCoOS-1	22.15	8.26	56.48	13.11			
MoCoOS-2	17.86	12.38	55.23	14.53			
MoCoOS-3	15.24	13.22	58.21	13.33			
MoCoOS-4	14.68	22.65	41.52	21.15			
Mo(S,O)	30.26		64.67	5.07			
Co(O,S)		44.89	9.98	45.13			

 Table S2 XRF elemental analysis of MoCoOS

Table S3 EDX composition analyses and the fitting parameters of EIS analyses of Mo(S,O), Co(O,S),

Catalyst	Elei	nents pe	rcentage	(%)	Electrolyte	Electron transfer	Warburg
	Mo	Co	0	S	resistances (Ω)	resistances (Ω)	resistances (Ω)
MoCoOS-1	21.35	8.36	57.39	12.90	0.44	2.30	1.36
MoCoOS-2	15.02	9.98	61.69	13.31	0.45	1.62	0.12
MoCoOS-3	16.38	13.59	56.25	13.78	0.44	12.57	0.56
MoCoOS-4	15.10	21.16	42.93	20.81	0.46	21.46	6.23
Mo(S,O)	27.15		65.32	7.53	0.52	96.30	0.90
Co(O,S)		42.68	15.20	42.12	0.50	584.60	

and MoCoOS catalysts

Table S4 EDX composition analyses of Mo(S,O), Co(O,S) in MoCoOS-1

MoCoOS-1 (%)	Мо	Co	0	S
А	26.24	0.39	64.55	12.82
В	25.44	0.67	63.67	10.22
С	24.83	0.01	63.38	11.78
D	23.18	0.08	64.06	11.68
Е	24.89	0.18	62.67	12.26
Mean value (A,B,C)	24.91	0.27	63.67	11.75
F	0.14	49.65	4.38	45.83
G	0.35	49.94	5.45	44.26
Н	0.28	50.46	5.12	44.14
Ι	0.25	50.12	4.68	44.95
J	0.31	49.31	4.23	46.15
Mean value (D,E,F)	0.27	49.90	4.77	45.07

MoCoOS-2 (%)	Мо	Co	0	S
А	23.12	0.28	65.95	10.65
В	23.25	0.07	66.41	10.27
С	22.83	0.33	68.46	8.38
D	22.95	0.26	68.12	9.67
E	22.55	0.29	68.21	8.95
Mean value (A,B,C)	22.94	0.25	67.43	9.58
F	0.82	48.08	6.34	44.76
G	0.41	49.71	5.35	44.53
Н	0.16	51.07	6.13	42.64
Ι	0.65	50.25	6.20	42.9
J	0.53	49.35	4.95	45.17
Mean value (D,E,F)	0.51	49.69	5.79	44.00

Table S5 EDX composition analyses of Mo(S,O), Co(O,S) in MoCoOS-2

Table S6 EDX composition analyses of Mo(S,O), Co(O,S) in MoCoOS-3

MoCoOS-3 (%)	Мо	Co	0	S
А	24.25	0.32	63.76	11.67
В	23.21	0.14	65.50	11.15
С	24.75	0.16	64.87	10.22
D	23.21	0.23	65.36	11.20
Е	22.35	0.43	64.58	12.64
Mean value (A,B,C)	22.55	0.26	64.81	11.38
F	0.26	48.15	4.23	47.36
G	0.21	46.96	4.68	48.15
Н	0.47	51.04	6.15	42.34
Ι	0.35	50.26	3.26	46.13
J	0.38	50.10	3.68	45.84
Mean value (D,E,F)	0.33	49.30	4.40	45.96

MoCoOS-4 (%)	Мо	Co	0	S
А	21.35	1.10	64.57	12.98
В	23.47	0.73	62.54	13.26
С	24.87	0.57	62.21	12.35
D	23.36	0.68	63.76	12.20
Е	22.34	0.86	65.65	11.15
Mean value (A,B,C)	23.08	0.79	63.75	12.39
F	0.58	48.12	5.32	45.98
G	0.36	46.23	5.87	47.54
Н	0.35	45.49	6.02	48.14
Ι	0.29	46.35	3.21	50.15
J	0.45	49.34	4.28	45.93
Mean value (D,E,F)	0.41	47.11	4.94	47.55

Table S7 EDX composition analyses of Mo(S,O), Co(O,S) in MoCoOS-4

λ Amount Hydrogen rate Hydrogen rate AQE Catalyst Sacrifice reagent Refs. (µmol/h) (mg) $(\mu mol/h/g)$ (%) (nm) 10 vol.% TEOA 10.52 262.90 4.93 $CoO_x/g-C_3N_4$ 40 420 [S1] 0.35 M Na₂S, CdS/MoS₂/Mo 10 12.59 1259 420 11.03 [S2] 0.25 M Na₂SO₃ $CoO/g-C_3N_4$ 50 2.51 50.20 420 1.91 **[S3]** --Co(dcbpy)2(NCS)2/ 50 10 vol.% TEOA 12.98 259.50 450 14.11 [S4] CQDs/CN $Mo-Mo_2C/g-C_3N_4$ 10 20 vol.% TEOA 1.10 219.70 420 8.3 [**S**5] $MoS_2/g-C_3N_4$ 5 20 vol.% TEOA 22.48 2.34 1124 420 [S6] K⁺CNO⁻Mo₂C 50 20 vol.% methanol 34.33 137.30 350 2.23 [**S**7] 100 20 vol.% methanol 750.20 1.92 $Co/g-C_3N_{4-x}$ 75.02 450 **[S8]** MoS_2/CdS -TiO₂ 20 20 vol.% latic acid 280 5600 420 19.30 [**S**9] 0.35 M Na₂S, 8.96 $Co_9S_8/Zn_{0.5}Cd_{0.5}S$ 10 109 10900 420 [S10] 0.25 M Na₂SO₃ $0.2 \text{ M} \text{Na}_2\text{S},$ This 14.42 Mo(S,O)/Co(O,S)20 7670 420 153.4 0.2 M Na₂SO₃ work

Table S8 Comparison of the catalytic activity for various catalysts containing oxides and sulfides of cobalt and molybdenum reported in literatures for hydrogen evolution

Table S9 Comparison of the catalytic activity of various catalysts reported in literatures for reduction

4-NP with NaBH₄.

Catalyst	Amount	Time (min)	Kinetic rate constant, $k_{app} (min^{-1})$	Ratio constant, K (min ⁻¹ g ⁻¹)	Refs.
Co ₃ O ₄	100 mg	2	0.0130	0.130	[S 11]
CuO-RGO	50 mg	9	0.1500	3.000	[S 12]
Pd-FG	10 mg	12	0.1410	14.100	[S 13]
3D-NGF	150 mg	16	0.5256	3.504	[S14]
Ni-PVAm@SBA	120 mg	20	0.1956	1.630	[S15]
MoCoOS-2	5 mg	18	0.2112	42.244	This work

Table S10 Comparison of the catalytic activity of various catalysts reported in literatures for reduction

Cr(VI) with NaBH ₄	Cr(VI)	with	NaBH ₄
-------------------------------	--------	------	-------------------

Catalyst	Amount	Time (min)	Kinetic rate constant, k_{app} (min ⁻¹)	Ratio constant, K (min ⁻¹ g ⁻¹)	Refs.
Ni@Carbon	50 mg	67	0.8370	16.743	[S 16]
AMD-nZVI/FeS2	70 mg	60	0.0210	0.300	[S17]
nZVI @HCl-BC	10 mg	120	0.0033	0.330	[S 18]
CuSbOS	20 mg	25	0.1930	9.650	[S 19]
CuO	20 mg	70	0.0735	3.675	[\$20]
MoCoOS	5 mg	18	0.2666	53.310	This work

References:

- [S1] Y. Zhu, T. Wan, X. Wen, D. Chu, Y. Jiang. Tunable Type I and II heterojunction of CoO_x nanoparticles confined in g-C₃N₄ nanotubes for photocatalytic hydrogen production [J]. *Appl. Catal. B-Environ.*, 244 (2019) 814-822.
- [S2] L. Zhao, J. Jia, Z. Yang, J. Yu, A. Wang, Y. Sang, W. Zhou, H. Liu. One-step synthesis of CdS nanoparticles/MoS₂ nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H₂ evolution [J]. *Appl. Catal. B-Environ.*, 210 (2017) 290-296.
- [S3] F. Guo, W. Shi, C. Zhu, H. Li, Z. Kang. CoO and g-C₃N₄ complement each other for highly efficient overall water splitting under visible light [J]. *Appl. Catal. B-Environ.*, 226 (2018) 412-420.
- [S4] Y. Zhang, W. Zhang. Ternary catalysts based on amino-functionalized carbon quantum dots, graphitic carbon nitride nanosheets and cobalt complex for efficient H₂ evolution under visible light irradiation [J]. *Carbon*, 145 (2019) 488-500.
- [S5] J. Dong, Y. Shi, C. Huang, Q. Wu, T. Zeng, W. Yao. A New and stable Mo-Mo₂C modified g-C₃N₄ photocatalyst for efficient visible light photocatalytic H₂ production [J]. *Appl. Catal. B-Environ.* 243 (2019) 27-35.
- [S6] J. Sun, S. Yang, Z. Liang, X. Liu, P. Qiu, H. Cui, J. Tian. Two-dimensional/one-dimensional molybdenum sulfide (MoS₂) nanoflake/graphitic carbon nitride (g-C₃N₄) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity [J]. *J. Colloid Interf. Sci.*, 567 (2020) 300-307.
- [S7] D. Li, C. Zhou, X. Liang, X. Shi, Q. Song, M. Chen, D. Jiang. Noble-metal-free Mo₂C cocatalsyt modified perovskite oxide nanosheet photocatalysts with enhanced hydrogen evolution performance [J]. *Colloid. Surface. A.*, 615 (2021) article 126252.

- [S8] D. Zhang, L. Peng, K. Liu, H. Garcia, C. Sun, L. Dong. Cobalt nanoparticle with tunable size supported on nitrogen-deficient graphitic carbon nitride for efficient visible light driven H₂ evolution reaction [J]. Chem. Eng. J., 381 (2020) article 122576.
- [S9] N. Qin, J. Xiong, R. Liang, Y. Liu, S. Zhang, Y. Li, Z. Li, L. Wu. Highly efficient photocatalytic H₂ evolution over MoS₂/CdS-TiO₂ nanofibers prepared by an electrospinning mediated photodeposition method [J]. Appl. Catal. B-Environ., 202 (2017) 374-380.
- [S10] X.L. Li, R.B He, Y. Dai, S. Li, N. Xiao, A. Wang, Y. Gao, N. Li, J. Gao, L. Zhang, Lei Ge. Design and fabrication of Co₉S₈/Zn_{0.5}Cd_{0.5}S hollow nanocages with significantly enhanced photocatalytic hydrogen production activity [J]. Chem. Eng. J., 400 (2020) 125474.
- [S11] T.R. Mandlimath, B. Gopal. Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol [J]. J. Mol. Catal. A-Chem., 380 (2011) 9-15.
- [S12] K. Revathi, S. Palantavida, B.K. Vijayan. A Facile Method for the Synthesis of CuO-RGO Nanocomposite for Para Nitrophenol Reduction Reaction [J]. Mater. Today-Proceeds., 9 (2019) 587-593.
- [S13] Z. Wang, C. Xu, G. Gao, X, Lin, Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction [J]. Rsc. Adv., 4 (2014) 13644-13651.
- [S14] J. Liu, X. Yan, L. Wang, L. Kong, P. Jian. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol [J]. J. Colloid. Interf. Sci., 497 (2017) 102-107.
- [S15] R.J. Kalbasi, A.A. Nourbakhsh, F. Babaknezhad. Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds [J]. J. Catal. Commun., 12 (2011) 955-960.
- [S16] Z. Lv, X. Tan, C. Wang, A. Alsaedi, T. Hayat, C. Chen. Metal-organic frameworks-derived 3D

yolk shell-like structure Ni@carbon as a recyclable catalyst for Cr(VI) reduction [J]. *Chem. Eng. J.*, 389 (2020) article 123428.

- [S17] Z.H. Diao, L. Yan, F.X. Dong, Z-L. Chen, P.R. Guo, W. Qian, W.X. Zhang, J.Y. Liang, S.T. Huang, W. Chu. Ultrasound-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI coupling with FeS₂ system from aqueous solutions: Performance and mechanism [J]. J. Environ. Manage., 278 (2021) article 111518.
- [S18] H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution [J]. J. Hazard. Mater., 332 (2017) 79-86.
- [S19] X.Y. Chen, D.H. Kuo, J.B. Zhang, Qi.X. Lu, J.G. Lin. Nanosheet bimetal oxysulfide CuSbOS catalyst for highly efficient catalytic reduction of heavy metal ions and organic dyes [J]. J. Mol. Liq., 275 (2019) 204-214.
- [S20] Z.H. Xu, Y.Q. Yu, D. Fang, J.R. Liang, L.X. Zhou. Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid [J]. *Mater. Chem. Phys.*, 171 (2016) 386-393.