Supporting Information for:

Designing Ultratough, Malleable and Foldable Biocomposites for Robust Green

Electronic Devices

Xunan Hou^a, Siqi Liu^a, Chaobin He^{*a,b}

^aDepartment of Materials Science and Engineering, National University of Singapore, 9

Engineering Drive 1, Singapore 117575

^bInstitute of Materials Research and Engineering, Agency for Science, Technology, and

Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634

This file contains:

Supporting Text

Figures S1-S9

Tables S1-S5

Supporting Text

1. Theory

Dependence of glass transition on composition is a semiquantitative method to assess the attractive interaction between polymers. The Tg-composition dependence can be interpreted from the Gordon-Taylor equation^[1]:

$$T_g = T_{g,1} + \frac{kw_1(T_{g,2} - T_{g,1})}{w_1 + kw_2}$$
(Eq. S1)

where $T_{g,i}$ are the glass transition temperatures, while w_i are the weight fractions of each component. k is an adjustable parameter related to changes in heat capacity during glass transition:

$$k = \frac{\Delta c_{p2}}{\Delta c_{p1}} (1 + w_1 \frac{\partial c_p^l}{\Delta c_{p2}} + w_2 \frac{\partial c_p^g}{\Delta c_{p1}})$$
(Equation S2)

where Δc_{pi} denotes the change in heat capacity c_{pi} at glass transition for the ith component. c_{pi} was measured according to literature ^[2]. k is calculated from c_{pi} values before and after the T_g. ∂c_p^l and ∂c_p^g are the derivative change in heat capacity in the liquid and glass phase, respectively. Lu et al. ^[1] developed a modified Gordon-Taylor model to predict T_gcomposition relationships in binary polymer blends. When interactions between the components are negligible, ∂c_p^l and ∂c_p^g become infinitesimal and the k value is reduced to

$$K_0 = \frac{\Delta c_{p2}}{\Delta c_{p1}}$$

2. Differential scanning calorimetry (DSC)

In the LBO composites, the determination of T_g of PLA and PHB phase is not reliable due to: i) The endothermic peak of the PHB rigid amorphous fractions^[3,4] overlapping with the T_g of

PLA phase (40-55 °C); ii) the high crystallinity of PHB that hinders occurring near its T_g (-5

to 5 °C).

Fig. S1 (a-c) Glass transition temperature – composition relationship in binary biodegradable polymer blends. (d) interaction strength parameter k_{GT} and critical value k_{Fox} of three polymer pairs.

Fig. S2 (a-b) melt contact angle between polymers. (c) FESEM images of cryo-impact surface after solvent etching. Scale bar is 2 µm.

Fig. S3 (a) Stress-strain curves of LBO-3 blends (~3mm thick) after 500 cycles of 180° bend.

(b) SEM images of the LBO-3 blend. Scale bar is $100 \ \mu m$.

Fig. S4 (a) Stress-strain curves of different polymer systems compared with PLA-PHB-PEO blends. Inset: contact angles of relevant polymer pairs. (b) FESEM images of tensile fractured surface of PLA-PHB-3PCL. Inset: corresponding SAXS patterns. Color scale: 0-2000.

Fig. S5 (a) Stress-strain curves of different polymer systems compared with PLA-PHB-PEO blends. Inset: contact angles of relevant polymer pairs. FESEM images of tensile fractured surfaces of (b) PLA-PBS (c) PLA-PBS-3PEO. Inset: corresponding SAXS patterns. Color scale: 0-2000.

Fig. S6 (a) Digital images showing the tensile elongation in LBO-3 (left) compared to LBO-0 (right); (b) SEM images showing crazes in fractured LBO-3 sample. Tension direction is near vertical.

а	
	Starting and
	100 µm
b	
	10 µm
С	
	10 µm

Fig. S7 SEM images of 50 μ m thick films of (a) (b) neat PLA after 10 cycle 90° folds; (c)

LBO-3 sample after 500 cycle 90° fold.

Fig. S8 Electronic conduction test of LBO-0 film: (a) original form; (b) bent and fractured

with open-circuit.

Fig. S9 Representative stress-strain curve of crumpled LBO-3 film up to >100% elongation. The lower tensile strength was due to different processing pressures for thin films (~20 MPa) and bulk samples (~70 MPa)

	Modulus	σ	Strength	σ	Elongation	σ	Toughness ¹	σ
	[GPa]	[GPa]	MPa	MPa	[%]	[%]	[MJ/m ³]	[MJ/m ³]
PLA	3.44	0.25	64.12	0.75	3.65	0.85	1.15	0.24
PHB	0.59	0.08	12.38	0.27	2.97	0.21	0.23	0.05
LBO-0 ²	3.37	0.22	48.09	0.54	5.79	2.24	1.74	0.95
LBO-3	3.45	0.15	49.27	0.51	247.93	26.66	62.84	6.09
LBO-5	2.76	0.12	47.83	0.94	300.23	13.91	86.58	7.54
BO-1	0.55	0.03	13.52	0.47	5.73	1.13	0.46	0.07
BO-3	0.53	0.02	13.72	0.42	8.39	1.45	0.59	0.06
BO-5	0.52	0.02	13.00	0.38	8.25	0.96	0.74	0.10
LBO-10	1.72	0.16	23.64	1.92	207.56	14.41	44.56	1.24
LBC-3	3.25	0.14	44.26	0.57	16.10	2.35	2.40	0.38
LS-25	3.56	0.27	58.01	0.87	161.50	18.15	53.18	5.23
LSO-3	3.45	0.32	51.67	0.72	10.23	1.24	3.50	0.47

Table S1 Mechanical properties of polymer blends and ternary biocomposites, along with standard deviations (σ)

¹: calculated from the area under stress-strain curves.

²: Abbreviated forms: L = PLA, B = PHB, O = PEO, C = PCL, S = PBS; For ternary composites, 1^{st} component is the continuous phase, the 2^{nd} component is the disperse phase (fixed at 25% wt).

Slice	Count	Total Area	Average Size	Feret	MinFeret
	-	nm ²	nm ²	nm	nm
LBO-0	22	37845983	1720271.955	1716.178	1361.23
LBO-3	77	4608025	59844.477	299.963	217.402

Table S2 Parameters from statistical analysis of FESEM images (ImageJ software).

Table S3

Comparison of the mechanical properties of LBO blends with literature reports of other polymer blends/ composites.

Parameters	Strength	Elongation	Toughness*	Reference
Units	MPa	%	MJ/m ³	
PS/PPE (Noryl®)	35-68	25-82	17-28.7	[5]
ABS/PC	45-50	40-80	18-40	[5]
PP/elastomer (TPV)	6.2-8.8	45-100	19-43.12	[5]
PHB/PHBV	22.6-25.6	539-589	99.8-103.5	[6]
PLA/EB	22-40	130-220	28-40	[7]
PE/iPP	20-25	180-400	36-88	[8]
Ag/Au/SBS	3-22	180-840	4.5-93.5	[9]
PVA/GO	64-120	1.2-2.4	1.44-1.53	[10]
PLA/CSNP	33-35	48-288	14-75	[11]
UHMWPE/GO	23-27	75-290	17.25-78.3	[12]
PLA/PoSS	38-52	48-65	18.2-29.2	[13]
PVAm/PVA	20-70	16-40	8-22	[14]
PLA/PHB/PEO	47-50	198-301	60-85	This work

*Values are determined from the area below the stress-strain curves, or estimated from strength and elongation values

	$T_{\alpha}{}^a$	$T_{cc,PLA}^{b}$	$T_{m,PLA}^{b}$	$T_{m,PHB}^{b}$	$\Delta H_{cc,PLA}^{c}$	$\Delta H_{m,PLA}{}^{c}$	$\Delta H_{m, PHB}{}^{c}$	$X_{c,PLA}^{d}$	$X_{c,PHB}^{d}$
	°C	°C	°C	°C	J/g	J/g	J/g	%	%
LBO-0	57.41	100.49	154.20	172.42	26.15	27.32	14.25	1.68	39.04
LBO-3	52.51	87.13	153.78	169.47	21.50	23.37	14.43	2.79	39.53
LBO-5	51.94	81.64	153.03	168.96	23.33	25.15	15.16	2.80	41.53
LBO-10	51.53	88.57	153.61	167.96 175.04	16.01	19.71	14.57	6.12	39.92

Table S4 Thermal properties of LBO-x ternary biocomposites

^{a)} Weight percentage of PMMA. ^{b)} glass-rubbery transition temperature from DMA tand curve. ^{c)} Obtained from DSC thermogram: the glass transition temperature (T_g), cold crystallization temperature (T_{cc}), enthalpy of cold crystallization (ΔH_{cc}) and melting (ΔH_m). ^{d)}

$$X_{c} = \frac{\Delta H_{m,i} - \Delta H_{cc,i}}{w_{i} \Delta H_{ci}}$$

calculated using the formula $w_i \Delta H_{c,i}$, where w is the weight fraction of the polymer in the blend, $\Delta H_{c,i}$ is the crystallization enthalpy of fully crystallized polymer. $\Delta H_{c,}$ _{PLA} = 93 J/g^[15], $\Delta H_{c, PHB}$ = 146 J/g^[16].

	T _{d,onset, PHB}	$T_{max, PHB}$	T _{max, PLA}	T ₅₀
	°C	°C	°C	°C
LBO-0	248.04	266.93	353.83	333.36
LBO-3	267.67	284.33	355.47	345.52
LBO-5	280.21	292.90	362.12	346.65

Table S5 TGA results of binary and ternary blends

References

- [1] X. Lu, R. A. Weiss, *Macromolecules* **1992**, *25*, 3242.
- [2] American Society for Testing and Materials (ASTM®), ASTM Stand. 2011, *i*, 1.
- [3] M. L. Di Lorenzo, M. C. Righetti, J. Therm. Anal. Calorim. 2013, 112, 1439.
- [4] M. L. Di Lorenzo, M. Gazzano, M. C. Righetti, *Macromolecules* 2012, 45, 5684.
- [5] L. A. Utracki, C. A. Wilkie, *Polymer Blends Handbook* (Eds.: Utracki, L. A.; Wilkie, C. A.), Springer Netherlands, Dordrecht, 2014.
- [6] X. Tang, A. H. Westlie, E. M. Watson, E. Y. X. Chen, Science (80-.). 2019, 366, 754.
- [7] R. Li, L. Wu, B. G. Li, *Eur. Polym. J.* **2018**, *100*, 178.
- [8] J. M. Eagan, J. Xu, R. Di Girolamo, C. M. Thurber, C. W. Macosko, A. M. La Pointe,
 F. S. Bates, G. W. Coates, *Science (80-.).* 2017, 355, 814.
- [9] S. Choi, S. I. Han, D. Jung, H. J. Hwang, C. Lim, S. Bae, O. K. Park, C. M.
 Tschabrunn, M. Lee, S. Y. Bae, J. W. Yu, J. H. Ryu, S. W. Lee, K. Park, P. M. Kang,
 W. B. Lee, R. Nezafat, T. Hyeon, D. H. Kim, *Nat. Nanotechnol.* 2018, 13, 1048.
- [10] Y. Q. Li, T. Yu, T. Y. Yang, L. X. Zheng, K. Liao, Adv. Mater. 2012, 24, 3426.
- [11] H. He, Z. Duan, Z. Wang, Compos. Part A Appl. Sci. Manuf. 2020, 128, 105676.
- [12] Y. Chen, Y. Qi, Z. Tai, X. Yan, F. Zhu, Q. Xue, Eur. Polym. J. 2012, 48, 1026.
- [13] Z. Liu, D. Hu, L. Huang, W. Li, J. Tian, L. Lu, C. Zhou, Chem. Eng. J. 2018, 346, 649.
- [14] A. Eckert, T. Rudolph, J. Guo, T. Mang, A. Walther, Adv. Mater. 2018, 30, 1.
- [15] S. Saeidlou, M. A. Huneault, H. Li, C. B. Park, Prog. Polym. Sci. 2012, 37, 1657.
- [16] P. J. Barham, A. Keller, E. L. Otun, P. A. Holmes, J. Mater. Sci. 1984, 19.