

Figure S1. The synthesis route of PFBA-QA-x

Figure S2. The ¹H NMR spectra of BBPF

Figure S3. The ¹H NMR spectra of PFBA-QA-0.3

Figure S4. The ¹H NMR spectra of PFBA-QA-0.4

Figure S5. The ¹H NMR spectra of PFBA-QA-0.5

Figure S6. The ¹H NMR spectra of PFBA-QA-0.6

Figure S7. SAXS of PFBA-QA-x (x = 0.3, 0.4, 0.5, 0.6).

Figure S8. (a) Digital image of PFBA-QA-0.4. (b) Digital image of PFBA-QA-p by on-line method. (c) Digital image of PFBA-QA-p by off-line method.

Figure S9. (a) SEM image of PFBA-QA-0.4 (b) SEM image of PFBA-QA-p.

Figure S10. The ¹H NMR spectra of model compound.

Figure S11. The ¹H NMR spectra of degraded model compound.

Figure S12. The mass spectrometry of model compound before and after oxidation.

Figure S13. The KCl ITN of PFBA-QA-x.

Figure S14. The HCl ITN of PFBA-QA-x.

Figure S15. The H_2SO_4 ITN of PFBA-QA-x.

Figure S16. The ITN of PFBA-QA-p in KCl, H₂SO₄, HCl and VOSO₄.

Figure S17. The FTIR image of PFBA-QA-0.4, PFBA-QA-p by on-line and off-line methods.