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Note S1: A database of adsorption energies for machine learning models.

Among the considered datasets, pure transition metals (TMs) contain Ag, Au, Cu, Pt, Pd, Ir, Ni, 

Rh and Ru, single-atom alloys (SAAs) contain Ag@Cu, Au@Ni, Pt@Rh and Pd@Ir, and AB 

intermetallics (ABs) contain AgAu, AgPt, PtRh and IrRu, which are from reference 1. We consider the 

(100) facet with 2 adsorption sites, the (110) facet with 4 sites, the (111) facet with 3 sites and (211) 

facets with 12 sites. Each metallic adsorption systems contain six adsorbates of C, CH, CO, H, O and 

OH. For the high-entropy alloys (HEAs) with the adsorbate of OH on IrPdPtRhRu, we consider the 

(100) facet with 1 bridge site, (110) facet with 2 bridge sites, (111) facet with 1 bridge site, (211) facet 

with 3 bridge sites and (532) facet with 6 bridge sites, which are all from reference 2. The considered 

adsorption sites are shown in Figure S1. For the case of the interchanges of nearest-neighboring 

atoms on HEAs, we consider the HEA structures with the adsorption sites of RhRh, PtPt and PdIr. For 

the TM nanoparticles (NPs) from reference 3, the data contain three morphologies of Cube, 

Cuboctahedron and Icosahedron as well as three sizes of 55-, 147- and 172-atoms, with three 

adsorbates of CH3, CO and OH. The structures are shown in Figure S2. The datasets on TMs with 

adatoms come from reference 4, which include (100), (111), (211) facets and three adsorbates of CH3, 

CO and OH.
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Note S2: A Python script for determining the adsorption sites and active sites of targeted structrues 

and caculating the corresponding descriptors.

We design a Python script to make it easy for users to obtain a large number of descriptors of 

the targeted structures. Based on the package of Atoms Simulation Environment (ASE)5, this script is 

used for identifying the adsorption sites and active sites of the targeted structrues built for Material 

Studio, VASP and other accessible files or softwares supported by ASE. The script determines the 

nearest neighboring atoms by collision sphere detection for ASE, namely given a number of spheres 

of the different radius located at the different points, it calculates the pairs of spheres that overlap. 

We use this detection to identify the neighboring atoms and coordination numbers. Taking the given 

package as an example, we input the Trajectory files that include the structure information. The 

script first identifies the adsorbates and substrates by searching every atoms and then determine 

the atoms at adsorption site and nearest neighbor according to the position of the adsorbates. Based 

on the collected information of active centers, the ψ,  and their coupling terms are calculated.CN
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Figure S1. Overview of structures used for the considered adsorption sites on (a) the (100) facet, (b) 

the (110) facet, (c) the (111) facet, (d) the (211) facet and (e) the (532) facet.
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Figure S2. The structures of nanoparticles. (a) 55-atom Cuboctahedron. (b) 55-atom Icosahedron. (c) 

147-atom Cuboctahedron. (d)147-atom Icosahedron. (e)172-atom Cube.
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Figure S3. The central atoms (the adsorption sites, represented by the green empty circles) and the 

atoms with more bonding numbers with central atoms (the atoms in category C2, represented by the 

yellow empty triangles) for fcc (a) and hcp (b) site.
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Figure S4. The transferability of our models in predicting the adsorption energies of HEAs by training 

the data of TMs only based on four descriptors , , CN and .ψ0 CN ψ0CN
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Figure S5. The mutual predictions for different sizes and morphologies of nanoparticles (NPs). (a) 

shows the performance to predict the adsorption energies of 172-atoms NPs by training the 

properties of 55- and 147-atoms clusters. (b) shows the performance to predict the adsorption 

energies of the 147- and 172-atoms NPs by training the properties of 55-atoms NPs. (c), (d) and (e) 

shows the performance to predict the adsorption energies of two types of NPs by training the 

properties of only one types of NPs.
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Supplementary Table S1. The results of ML model on the datasets of TMs, SAAs and ABs with 
various training sizes. The training scores and test scores are obtained based on 5-fold cross-
validation (CV). The 5-fold CV scores and 10-fold CV scores on the training sets are also listed.

Training Sizes Training Scores Test Scores 5-fold CV Scores 10-fold CV Scores

5% 1.000 0.714 0.588 0.253

10% 1.000 0.819 0.752 0.737

15% 0.999 0.874 0.839 0.839

20% 0.999 0.913 0.887 0.894

25% 0.998 0.940 0.914 0.921

30% 0.997 0.952 0.925 0.932

35% 0.997 0.960 0.944 0.950

40% 0.997 0.965 0.952 0.956

45% 0.997 0.969 0.959 0.963

50% 0.997 0.973 0.965 0.967

55% 0.997 0.974 0.968 0.971

60% 0.997 0.976 0.971 0.973

65% 0.997 0.978 0.974 0.975

70% 0.997 0.979 0.975 0.977

75% 0.998 0.981 0.976 0.978

80% 0.997 0.981 0.978 0.979

85% 0.998 0.982 0.979 0.980

90% 0.998 0.983 0.980 0.981

95% 0.998 0.984 0.981 0.982
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Supplementary Table S2. The results of ML model on the datasets of HEAs with various training 
sizes. The training scores and test scores are obtained based on 5-fold cross-validation (CV). The 5-
fold CV scores and 10-fold CV scores on the training sets are also listed.

Training Sizes Training Scores Test Scores 5-fold CV 10-fold CV

5% 0.998 0.893 0.860 0.828

10% 0.996 0.927 0.912 0.907

15% 0.993 0.940 0.931 0.929

20% 0.990 0.948 0.939 0.939

25% 0.988 0.952 0.946 0.946

30% 0.986 0.954 0.950 0.950

35% 0.985 0.956 0.953 0.954

40% 0.983 0.958 0.954 0.954

45% 0.982 0.958 0.956 0.956

50% 0.981 0.960 0.957 0.957

55% 0.981 0.960 0.958 0.959

60% 0.980 0.961 0.959 0.959

65% 0.979 0.961 0.960 0.960

70% 0.979 0.963 0.960 0.960

75% 0.978 0.962 0.961 0.961

80% 0.978 0.963 0.961 0.961

85% 0.977 0.963 0.962 0.962

90% 0.977 0.963 0.962 0.962

95% 0.977 0.962 0.962 0.963
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Supplementary Table S3. Comparison between the DFT-calculated  and the predicted  by ∆Ead ∆Ead

our machine learning scheme for CO. Cu(100) is selected as the reference to calculate .  ∆Ead

Alloys Predicted  (eV)∆Ead DFT-calculated  (eV) ∆Ead Error (eV)

Cu@Ag(211) 0.002 -0.102 0.104

Cu@Au(211) -0.043 -0.083 0.040

Cu(100) 0 0.014 0.014

Cu@Ni(211) -0.089 -0.157 0.068

Cu@Ir(211) -0.128 -0.120 0.008

Cu@Pd(211) 0.022 -0.210 0.232

Cu@Pt(211) -0.037 -0.172 0.135

Cu@Rh(211) 0.022 -0.141 0.163

CuAg(211) -0.089 -0.090 0.001

CuAu(211) -0.017 -0.059 0.042

CuIr(211) 0.009 -0.062 0.071

CuPd(211) -0.095 -0.198 0.103

CuPt(211) 0.015 -0.138 0.153

CuRh(211) -0.095 -0.169 0.074

HEA(100)-1 -0.007 -0.025 0.018

HEA(100)-2 -0.007 -0.128 0.119

HEA(100)-3 -0.007 -0.027 0.020

HEA(100)-4 -0.007 -0.031 0.024

HEA(100)-5 -0.007 0.004 0.011
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