Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information Enhancing Energy Storage Capacity of Graphene Supercapacitors via Solar Heating

Xinling Yu,^{‡ac} Nian Li,^{‡ac} Shudong Zhang,^{ac} Cui Liu,^{ac} Liqing Chen,^{abc} Min Xi,^{ac} Yanping Song,^{abc}

Sarmad Ali,^{ac} Obaid Iqbal,^{ac} Mingyong Han^d, Changlong Jiang^{ac} and Zhenyang Wang^{*ac}

^aInstitute of Solid-State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

^bDepartment of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026,

China

^cKey Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical

Science, Chinese Academy of Sciences, Hefei 230031, China

^dInstitute of Molecular Plus, Tianjin University, Tianjin 300072, China

[‡]These authors contributed equally to this work.

* Corresponding author.

zywang@iim.ac.cn (Zhenyang Wang)

Note S1 Faradaic reaction of the PPy in the ST-MSC

The conducting polymers polypyrrole (PPy) provides the pseudocapacitance from a Faradaic process on its surface through the doping/dedoping reaction, A^- represents the negative ions such as PTS⁻, SO_4^{2-} , and so on.

Fig. S1 Photograph of the flexible ST-MSC worn on the finger.

Fig. S2 Morphology characterizations of the LIG. The SEM images (a, b) and TEM image (c). (d) N₂ adsorption/desorption isotherm and pore size distribution. (e) XRD and Raman spectroscopy.

The LIG can be characterized by the characteristic peaks at 1349 cm⁻¹ (D band, disorder and defective nature of graphene), 1583 cm⁻¹ (G band, graphitic sp² carbon) and 2706 cm⁻¹ (2D band, alteration of the electronic band structure resulted from the interactions between the graphene layers). The low I_D/I_G of the LIG indicates the graphitic structure ^[1-3]. XRD analysis confirms the graphitization of LIG by two distinct peaks at 26 ° and 43.2 °, corresponding to the typical (002) and (100) lattice planes of crystallized graphite, respectively ^[4-6].

Fig. S3 Contact angle of water on LIG/PPy-15000.

Fig. S4 Top view of SEM images of (a) LIG, (b) LIG/PPy-5000, (c) LIG/PPy-10000, (d) LIG/PPy-15000, and (e) LIG/PPy-20000.

Fig. S5 The cross-sectional SEM image and the corresponding EDS elemental mappings of LIG/PPy-15000 composite, the scale bars are 50 μ m.

Fig. S6 (a) CV curves of ST-MSC based on LIG/PPy-X electrode, the scan rate is 200 mV s⁻¹. (b) GCD curves of LIG and LIG/PPy-X, the current density is 0.5 mA cm⁻². (c) The areal specific capacitances of LIG and LIG/PPy-X calculated from the GCD curves at the current density is 0.5 mA cm⁻².

Fig. S7 (a) CV curves of ST-MSC in dark (15 °C). CV curves of ST-MSC at the heating temperature of (b) 30 °C, (c) 45 °C, (d) 60 °C, and (e) 75 °C at the scan rate range of 5 and 200 mV/s.

Fig. S8 (a) GCD curves of ST-MSC in dark 15 °C. GCD curves of ST-MSC at the heating temperature of (b) 30 °C, (c) 45 °C, (d) 60 °C, and (e) 75 °C at the current density range of 0.5 and 10 mA/cm^2 .

Table S1 Comparison of	capacitance, energy	y density, power	r density, and sta	bility of reported	MSC
based on graphene comp	osite electrodes				

Electrode	Specific capacitance (mF/cm ²)/(F/cm ³)	Energy density (µWh/cm²)/(mWh/cm³)	Power density (µW/cm²)/(mW/cm³)	Capacitence retention	Ref.
LIG/PANI	90.3/11.88 at 0.5 mA/cm ²	8.0/1.05	629.5/82.83	97 % after 6000 cycles	[7]
LIG/MnO ₂	233.4/23.35 at 0.5 mA/cm ²	32.4/3.21	2334.0/231.1	82 % after 6000 cycles	[7]
PPy/GF	89.6/~0.48 at 0.6 mA/cm ²	24/~0.13	390/~2.09	~75 % after 10000 cycles	[8]
rGO/PPy	9.4/ at 0.17 mA/cm ²	20/	40/	87 % after 2000 cycles	[9]
rGO/PPy	512/59.9 at 1.0 mA/cm ²	61.4/7.18	10/1.17	82.7 % after 10000 cycles	[10]
LIG/PPy	574/19.1 (R.T., 15 °C) 2755.2/91.84 (60 °C) 2752.3/91.74 (R.T., under 1 solar irradiation) at 0.5 mA/cm ²	134.7/4.49 (R.T., 15 ℃) 646.6/21.56 (60 ℃) 646.0/21.53 (R.T., under 1 solar irradiation)	6500/216.7	96.3 % (R.T., 15 ℃) 86.0 % (60 ℃) 85.8 % (R.T., under 1 solar irradiation) after 10000 cycles	This work

Fig. S9 The structural and morphological characterizations of the LIG/PPy-15000 after 10000 GCD cycles at 60 $^{\circ}$ C. (a-c) The SEM images of LIG/PPy-15000 at different magnifications. (d and e) The TEM images of LIG/PPy-15000 at different magnifications. (f) Contact angle of water on LIG/PPy-15000. (g) N₂ adsorption/desorption isotherm and pore size distribution of LIG/PPy-15000. (h) XRD and Raman patterns of LIG/PPy-15000.

No obvious changes were observed in the structures and morphologies of electrode material before and after the electrochemical studies at 60 $^{\circ}$ C, indicating the good stability of the electrode material to temperature.

Fig. S10 (a) Nyquist spectra of panel a showing the semicircles plotted on the shifted real axis for clarity (left); The equivalent circuit model (right). (b) Parameter results simulated by the equivalent circuit model.

Fig. S11 The change of the R_m value when the temperature rises from 15 to 75 °C.

Fig. S12 Fabrication of two different structures MSCs: MSC-PI and ST-MSC.

Fig. S13 (a) Schematic cross-section of the MSC-PI. (b) UV-vis-NIR transmittance (T), reflectance (R), and absorption (A) spectra of the MSC-PI. (c) Time-courses of the MSC-PI under solar irradiation at a light intensity of 1.00 kW m^{-2} .

The solar-thermal conversion efficiency (η) is calculated according to the following equation:

$$\eta = [h S_{MSC} (T_{\text{max}} - T_0) - Q_S] / I (1 - 10^{-A})$$
(S1)

$$\tau = \sum M_{\rm e} C_{\rm e} / h \, \mathrm{S}_{MSC} \tag{S2}$$

where *h* is the heat-transfer coefficient, S_{MSC} is the area of the MSC, T_{max} is the maximum temperature in steady state, T_0 is ambient temperature, Q_S is the thermal energy dissipated to the surrounding per unit time, *I* is the simulated solar light intensity, A is the absorbance of the MSC over the entire solar spectrum, τ is the system time constant, M_e and C_e are the mass and heat capacity of electrode material and electrolyte, respectively. The detailed calculation parameters of η are listed in Table S1.

Parameter	T_0	Ι	$C_{ m LIG}$	$C_{ m PPy}$	$C_{ m GE}$
MSCs	288.15 K	1.00 kW/m^2	1.34 J/kg/K	1.34 J/kg/K	5 J/kg/K
Parameter	$T_{\max}(\mathbf{K})$	A	$M_{ m LIG}$	$M_{ m PPy}$	$M_{ m GE}$
ST-MSC	348.2	98.8 %	1.2 mg	5.1 mg	300 mg
MSC-PI	338.5	95.9 %	1.2 mg	5.1 mg	300 mg

Table S2 The detailed calculation parameters of η of MSCs.

 M_{LIG} , M_{PPy} , and M_{GE} are the mass of LIG, PPy, and Gel Electrolyte of the MSC-PI and ST-MSC, respectively;

 C_{LIG} , C_{PPy} , and C_{GE} are the heat capacity of LIG, PPy, and Gel Electrolyte of the MSC-PI and ST-MSC, respectively.

Table S3 The comparison of transmittance (T), reflectance (R), absorption (A), solar-thermal conversion efficiency (η), and the surface temperature change (Δ T, under the solar irradiation at a light intensity of 1.00 kW m⁻²) of the MSC-PI and ST-MSC.

	Transmittance (T)	Reflectance (R)	Absorption (A)	Solar-thermal conversion efficiency (ŋ)	Temperature change (ΔT)
ST-MSC	0.1 %	0.1 %	98.9 %	23.5 %	45 °C
MSC-PI	0.1 %	4.3 %	95.6 %	22.8 %	40 °C

Electrochemical measurements

All electrochemical tests including cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) were performed on a CHI 660E electrochemical workstation (Shanghai CH Instrument Company, China). The areal specific capacitance ($C_{MSC, A}$) and volumetric specific capacitance ($C_{MSC, V}$) of the MSC were calculated from GCD curves according to equations S3 and S4, respectively:

$$C_{MSC, A} = I/(A_{MSC} \times (dV/dt)$$
(S3)

$$C_{MSC, V} = I/(V_{MSC} \times (dV/dt)$$
(S4)

where, I (mA) was the discharge current; dV/dt was the slope of galvanostatic discharge curves; A_{MSC} (cm²) and V_{MSC} (cm³) were the area and volume of the MSC, respectively.

The areal energy density $(E_{MSC, A})$ and volumetric energy density $(E_{MSC, V})$ of the MSC device were calculated by using equations S5 and S6, respectively:

$$E_{MSC, A} = C_{MSC, A} V^2 / (2 \times 3600)$$
(S5)

$$E_{MSC, V} = C_{MSC, V} V^2 / (2 \times 3600)$$
(S6)

where V was the potential difference of the full discharge process.

The areal power densities ($P_{MSC,A}$) and volumetric energy density ($P_{MSC,V}$) of the MSC device were calculated by using equations S7 and S8, respectively:

$$P_{MSC,A} = 3600 E_{MSC,A}/t \tag{S7}$$

$$P_{MSC, V} = 3600 E_{MSC, V}/t \tag{S8}$$

where *t* is the time spent in full discharge.

Fig. S14 (a) CV curves of ST-MSC in dark. CV curves of MSC under (b) 0.33 kW/m², (c) 0.66 kW/m², (d) 1.00 kW/m², and (e) 1.35 kW/m² at the scan rate range of 5 and 200 mV/s.

Fig. S15 (a) GCD curves of ST-MSC in dark. GCD curves of MSC under (b) 0.33 kW/m^2 , (c) 0.66 kW/m^2 , (d) 1.00 kW/m^2 , and (e) 1.35 kW/m^2 at the current density range of 0.5 and 10 mA/cm².

Fig. S16 The coulombic efficiencies of the ST-MSC at different heating temperatures and under different solar light intensities.

Table S4 Comparison of capacitance, energy density, and experiment conditions for the reported solar-heated supercapacitors

Electrode materials	Electrolyte	Heating method	Potential window (V)	Specific capacitence (F/cm ³)	Energy density (mWh/cm ³)	Stability (capacitence retention)	Ref.
N-MCN @GH	PVA/H2SO4	Solar heating in-situ from electrode material	0-1.0	8.1 (R.T., 17 ℃)/4.05 (cooling to 5 ℃)/15.39 (cooling and under 3.6 solar irradiation) at 0.64 mA/cm ²	1.12 (R.T., 17 °C)/0.56 (cooling to 5 °C)/2.13 (cooling and under 3.6 solar irradiation)	80 % (R.T., 17 ℃) after 10000 cycles	[11]
Graphene /PEDOT: PSS	PVA/H ₃ PO ₄	Solar heating in-situ from electrode material	0-0.7	0.53 (R.T., 25 °C)/0.82 (under 1 solar irradiation) at 3.3 mA/cm ³	0.036 (R.T., 25 °C) / 0.056 (under 1 solar irradiation)	99.76 % after 16000 cycles (R.T., 25 ℃)/72.04 % (under 1 solar irradiation) after 2000 cycles	[12]
РРу	PVA/H2SO4	Solar heating ex-situ from additional graphene film	0-0.6	12.08 (cooling to -50 °C)/24.5 (cooling and under 1 solar irradiation) at 100 mV s ⁻¹	0.96 (cooling to -50 °C)/1.404 (cooling and under 1 solar irradiation)	91.57% (cooling to -50 °C)/98.41% (cooling and under 1 solar irradiation) after 5000 cycles	[13]
LIG/PPy	PVA/H2SO4	Solar heating in-situ from electrode material	-0.6-0.7	19.1 (R.T., 15 °C)/91.74 (R.T., under 1 solar irradiation)/4.25 (cooling to -30 °C)/17.34 (cooling and under 1 solar irradiation) at 0.5 mA/cm ²	4.49 (R.T., 15 °C)/ 21.53 (R.T., under 1 solar irradiation)/1.0 (cooling to -30 °C)/4.08 (cooling and under 1 solar irradiation)	96.3 % (R.T., 15 °C)/85.8 % (R.T., under 1 solar irradiation)/82.4 % (cooling to -30 °C)/95.2 % (cooling and under 1 solar irradiation) after 10000 cycles	This work

Note: N-MCN@GH: N-doped mesoporous carbon nanosphere-intercalated 3D graphene hydrogel PEDOT:PSS: Poly(3,4-ethylenedioxythiophene):Poly(sodium-p-styrenesulfonate)

1 solar irradiation intensity is 1.0 kW/m^2

Fig. S17 Optical image of the low-temperature testing equipment (the ST-MSC placed and sealed in a homemade double-layer quartz container).

Reference:

- 1 R. Q. Ye, D. K. James and J. M. Tour, Adv. Mater., 2019, 31, 1803621.
- 2 G. Chen, Y. Liu, F. Liu and X. Zhang, Appl. Surf. Sci., 2014, 311, 808
- 3 Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei and H. M. Cheng, Nat. Mater., 2011, 10, 424.
- 4 C. Zhu, T. Y. J. Han, E. B. Duoss, A. M. Golobic, J. D. Kuntz, C. M. Spadaccini and M. A. Worsley, *Nat. Commun.*, 2015, **6**, 6962.
- 5 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, *Phys. Rev. Lett.*, 2006, 97, 187401.
- 6 A. M. Dimiev, G. Ceriotti, N. Behabtu, D. Zakhidov, M. Pasquali, R. Saito and J. M. Tour, ACS Nano, 2013, 7, 2773.
- 7 L. Li, J. B. Zhang, Z. W. Peng, Y. L. Li, C. T. Gao, Y. S. Ji, R. Q. Ye, N. D. Kim, Q. F. Zhong, Y. Yang, H. L. Fei, G. D. Ruan, and J. M. Tour, *Adv. Mater.*, 2016, 28, 838-845.
- 8 H. Park, J. W. Kim, S. Y. Hong, G. Lee, D. S. Kim, J. h. Oh, S. W. Jin, Y. R. Jeong, S. Y. Oh, J. Y. Yun and J. S. Ha, *Adv. Funct. Mater.*, 2018, **28**, 1707013.
- 9 J. C. Chen, Y. M. Wang, J. Y. Cao, Y. Liu, Y. Zhou, J. H. Ouyang and D. C. Jia, ACS Appl. Mater.

Inter., 2017, 9, 19831-19842.

- 10 C. Yang, L. L. Zhang, N. T. Hu, Z. Yang, H. Wei and Y. F. Zhang, J. Power Sources, 2016, 302, 39-45.
- 11 M. Y. Zhao, Y. L. Li, F. Lin, Y. S. Xu, L. L. Chen, W. C. Jiang, T. Jiang, S. G. Yang and Y. Wang, J. Mater. Chem. A, 2020, 8, 1829-1836.
- 12 F. Yi, H. Y. Ren, K. R. Dai, X. F. Wang, Y. Z. Han, K. X. Wang, K. Li, B. L. Guan, J. Wang, M. Tang, J. Y. Shan, H. Yang, M. S. Zheng, Z. You, D. Wei and Z. F. Liu, *Energy Environ. Sci.*, 2018, **11**, 2016.
- 13 Y. L. Sun, P. J. Ma, L. Y. Liu, J. T. Chen, X. Zhang, J. W. Lang and X. B. Yan, Sol. RRL, 2018, 2, 1800223.