Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Multiscale porous single-atom Co catalysts for epoxidation by O₂

Xiao Chen,^{#,a,b} Yong Zou,^{#,a,c} Mingkai Zhang,^c Wangyan Gou,^a Sai Zhang^{*a} and Yongquan Qu^{*a,c}

^a Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

^b School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

^c Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China

* Corresponding author.

Email: zhangsai1112@nwpu.edu.cn and yongquan@nwpu.edu.cn and yongguan@nwpu.edu.cn and yongguan@nwpu.edu.cn and yongguan@nwpu.edu.cn and yongtau angtau and yongtau angtau angtau

[#] These authors contributed equally to this work.

Theoretical method

The DFT calculations were performed with Quantum Espresso (QE) software¹ which uses a plane wave basis set. The electron exchange-correlation was processed with the framework of generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) parametrization.² The electron-ion interaction was described using the projected augmented wave (PAW) method.³ The spin is unristricted. The kinetic energy cutoffs of the plane wave and electron density were 80 and 500 Ry, respectively. For the calculation of bulk CoO, an 8 x 8 x 8 k-grid was used for the sampling in the Brillouin zone. Then, a (2 x 2) 5 layers CoO (001) slab model was build. For the calculation of CoO (001) slab model, a 3 x 3 x 1 k-grid was used. The Co embedded nitrogen-doped graphene model were modeled based on a 6 x 6 x 1 hexagonal suercell of graphene. Co atom was coordianted with three N atoms and one C atom (Co-N₃). For the calculation of Co-N₃, a 1 x 1 x 1 gamma k-point was used. Energy convergence of 10⁻⁷ eV/atom was ensured during the self-consistent field calculations. And the convergence criteria for the atomic forces was 0.05 eV/Å. The adsorption energy of O was calculated according to the following equation,

$$E_{ad} = E_{slab-O} - E_{slab} - 1/2 E_{O2}$$

Where E_{slab-O} is the energy of slab model with a O atom adsorbed on it; E_{slab} is the energy of slab model and E_{O2} is the energy of O₂ molecule.

References:

1. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M., *J Phys Condens Matter* **2009**, 21 (39), 395502.

- 2. Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett. 1996, 77 (18), 3865.
- 3. Dal Corso, A., Comp. Mater. Sci. 2014, 95, 337-350.

Figure S1. XRD patterns of CoZn-ZIF and CoZn-ZIF-h precursors.

Figure S2. (a) Low-magnification and (b) high-magnification TEM images of the CoZn-ZIF precursors. (c) Low-magnification and (d) high-magnification TEM images of the CoZn-ZIF-h precursors.

Figure S3. XRD patterns of the Co/NC, Co₁/NC-h, Co₁/NC and NC catalysts. Note: Reflection peaks of Co/NC was well consistent with the standard metallic Co (PDF # 15-0806)). Meanwhile, the peak at around 27° for Co/NC catalyst might be assigned to the phase of Co₂O₃ (PDF # 02-0770), due to the uncoated metallic Co being easily oxidized by air.

Figure S4. (a) Low-magnification and (b) high-magnification SEM images of the Co_1/NC catalysts. (c) Low-magnification and (d) high-magnification TEM images of the Co_1/NC -h catalysts.

Figure S5. (a) XRD patterns of Co-ZIF and Zn-ZIF precursors. TEM images of (b) Co-ZIF and (c) Zn-ZIF precursors.

Figure S6. (a) N_2 adsorption-desorption isotherms curve and (b) pore volume and pore size distribution of Co/NC catalysts.

Figure S7. XPS analysis of Co 2p peaks of used Co/NC catalysts.

Figure S8. Adsorption behaviour of (a) O_2 molecule and (b) O atom on the Co-N₃ and CoO surface. Red: O atom, dark blue: Co atom, and dark brown: C atom.

Figure S9. The possible reaction process of single-atom Co for the alkene epoxidation.

Figure S10. CV curves measured from 10 to 60 mV/s for the (a) Co_1/NC -h and (b) Co_1/NC catalysts.

Figure S11. (a) TEM image, (b) XRD pattern and (c) XPS analysis for Co 2p peak of used Co_1/NC -h catalysts.

Catalysts	Substrate	Temp.	O ₂ (bar)	Time (h)	Conv.	Sel.	Ref.
Fe ₂ /mpg-C ₃ N ₄	trans-stilbene	90	1 atm O ₂	24 h	91	93	<i>Nat. Commun.</i> , 2018 , 9(1), 1-7.
Fe ₁ /mpg-C ₃ N ₄	trans-stilbene	90	1 atm O ₂	24 h	trace		<i>Nat. Commun.</i> , 2018 , 9(1), 1-7.
Pt ₂ /mpg-C ₃ N ₄	Styrene	100	1 atm O ₂	12 h	93	78	<i>Nat. Commun.</i> , 2021 , 12(1): 1-9.
Ag ₁ -C ₂ N ₁	Styrene	100	1 atm O ₂	12 h	96	81	ACS Catal. 2021 , 11, 4946–4954.
SAS-Fe	Styrene	140	1 atm O ₂	3 h	64	89	<i>Adv. Mater.</i> 2020 , 32, 2000896
Co-N-C/SiO ₂	Methyl oleate	35	1 atm O ₂	5 h	99	99	<i>J. Chem. Phys.</i> , 2021 ,154(13):13110 3.
DUT-5- BPyDC(10)-Co	trans-stilbene	150	Air(200ml /min),	24 h	95	70	<i>ChemCatChem.</i> 2020 , 12, 1134– 1142
Pd/γ-AlOOH	trans-stilbene	120	1 atm O ₂	4 h	84	99	Chem. Eng. J., 2022 , 429: 132149.
Mn-2@POP-20	Chalcone	r.t.	H ₂ O ₂ /acid DMBA	2 h	93	96	ACS Catal., 2021 , 11, 10964–10973.

 Table S1. Summary of the epoxidation performances by various catalysts.