Supplementary information

Alleviated Mn²⁺ dissolution drives long-term cycling stability in ultrafine Mn₃O₄/PPy core-shell nanodots for zinc-ion battery

Le Jiang, Fei Ye, Zeyi Wu, Lin Zhang, Qiang Liu, Zilong Tang, Linfeng Hu*

[1] L. Jiang, Z. Y. Wu, L. Zhang, Prof. L. F. Hu

Department of Materials Science, Fudan University

Shanghai 200433 (P. R. China)

[2] Prof. L. F. Hu, Dr. Y. Fei, Q. Liu

School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China *Email: linfenghu@seu.edu.cn

[3] Prof. Z. L. Tang

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Fig. S1-Fig. S13 Table S1

Fig. S1 Size distribution of the as-prepared Mn_3O_4/PPy nanodots.

Fig. S2 High-resolution FTIR spectrum $(4000 - 700 \text{ cm}^{-1})$ of Mn₃O₄/PPy nanodots.

Fig. S3 X-ray photoelectron spectroscopy (XPS) spectra of (a) Mn 2p, (b) O 1s, (c) C 1s, and (d) N 1s for Mn_3O_4/PPy nanodots.

Fig. S4 Capacitive contribution (shaded) to the total Zn^{2+} storage capacity at the scan rate of 0.4 mV s⁻¹ of the Mn₃O₄/PPy nanodots.

Fig. S5 Nyquist plots of both cathodes before cycling and the corresponding fitting equivalent circuit of Mn_3O_4/PPy cathode (inset).

Fig. S6 Rate performance of the $Zn-Mn_3O_4$ and $Zn-Mn_3O_4/PPy$ batteries.

Fig. S7 GITT profiles and the corresponding calculated ion diffusion coefficient of the Mn_3O_4/PPy nanodot battery during charge and discharge process.

Fig. S8 (a) N_2 isothermal adsorption curve and (b) the corresponding pore size distribution curve of Mn_3O_4/PPy nanodots.

Fig. S9 Charge/discharge curves (voltage *versus* time) of a single flexible Zn-Mn₃O₄/PPy battery at different bending angles.

Fig. S10 Cycling performance of Mn_3O_4 and Mn_3O_4/PPy in electrolyte without $MnSO_4$ additive at 1.0 A g⁻¹ for 500 cycles.

Fig. S11 Charge/discharge profiles of (a) Mn_3O_4 and (b) Mn_3O_4/PPy at different cycling times at 1.0 A g⁻¹.

Fig. S12 *Ex situ* XRD patterns of Mn_3O_4 nanodot and Mn_3O_4 /PPy composite cathode before cycle.

Fig. S13 Low magnified TEM images of (a) Mn_3O_4/PPy -lp and (b) Mn_3O_4/PPy -mp coreshell nanodots, respectively.

Cathode	Specific capacity at 0.1 A g^{-1}	Cycling performance	Ref#
Mn ₃ O ₄ /PPy	332.5 mA h g ⁻¹	92.5% after 1500 cycles at 1.0 A g^{-1}	This work.
Mn ₃ O ₄ @C	$323.2 \text{ mA h g}^{-1}$	77% after 200 cycles at 0.5 A g^{1}	1
Mn ₃ O ₄ (50~100 nm)	$239.2 \text{ mA h g}^{-1}$	${\sim}70\%$ after 300 cycles at 0.5 A g^{-1}	2
Mn ₃ O ₄ nanoflower	$296 \text{ mA h } g^{-1}$	${\sim}67\%$ after 500 cycles at 0.5 A g^{-1}	3
Ball-milled Mn ₃ O ₄	221 mA h g^{-1}	${\sim}80\%$ after 500 cycles at 0.5 A g^{-1}	4
Mn ₃ O ₄ nanodots	$386.7 \text{ mA h g}^{-1}$	${\sim}85\%$ after 500 cycles at 0.5 A g^{-1}	5
MCM4@ Mn ₃ O ₄	${\sim}300~mA~h~g^{-1}$	${\sim}85\%$ after 1000 cycles at 0.6 A g^{-1}	6
Mn ₃ O ₄ @NC	280 mA h g^{-1}	${\sim}75\%$ after 500 cycles at 1.0 A g^{-1}	7
Mn ₃ O ₄ /GO	$215.6 \text{ mA h g}^{-1}$	${\sim}75\%$ after 500 cycles at 1.0 A g^{-1}	8

 Table S1. The comparison for electrochemical performance of various Mn₃O₄-related cathode materials in ZIBs.

Note and references

- H. Chen, W. Zhou, D. Zhu, Z. Liu, Z. Feng, J. Li and Y. Chen, J. Alloy. Compd., 2020, 813, 151812.
- 2 J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu and F. Kang, *Electrochim. Acta*, 2018, 259, 170-178.
- 3 C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang and S. Liang, J. Mater. Chem. A, 2018, 6, 9677-9683.
- 4 L. Wang, X. Cao, L. Xu, J. Chen and J. Zheng, ACS Sustain. Chem. Eng., 2018, 6, 16055-16063.
- 5 L. Jiang, Z. Wu, Y. Wang, W. Tian, Z. Yi, C. Cai, Y. Jiang and L. Hu, ACS Nano, 2019, 13, 10376-10385.
- 6 Q. Gao, D. Li, X. Liu, Y. Wang, W. Liu, M. Ren, F. Kong, S. Wang and R. Zhou, *Electrochim. Acta*, 2020, 335, 135642.
- 7 M. Sun, D. S. Li, Y. F. Wang, W. L. Liu, M. M. Ren, F. G. Kong, S. J. Wang, Y. Z. Guo and Y. M. Liu, *ChemElectroChem*, 2019, 6, 2510-2516.
- 8 Z. Huang, Y. Duan, Q. Jing, M. Sun, B. Tang and S. Shi, J. Alloy. Compd., 2021, 864, 158316.