Supporting Information

Hollow MoC/NC Sphere for Electromagnetic Wave Attenuation: Direct

Observation of Interfacial Polarization on nanoscale Hetero-interfaces

Wenhuan Huang,^{*ab**} *Wenming Gao*,^{*ab*} *Shouwei Zuo*,^{*b*} *Luxi Zhang*,^{*a*} *Ke Pei*,^{*c*} *Panbo Liu^c and Renchao Che*,^{*c**} *Huabin Zhang*,^{*b**}

^aKAUST Catalysis Center, King Abdullah University of Science and Technology, 23955-6900,

Thuwal, Kingdom of Saudi Arabia.

Email: huabin.zhang@kaust.edu.sa

^bKey Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and

Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Email: huangwenhuan@sust.edu.cn

^cLaboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative

Materials, Fudan University, Shanghai 200438, P. R. China.

Email: rcche@fudan.edu.cn

TABLE OF CONTENTS

1 EXPERIMENTAL SECTION ······1
2 CHARACTERIZATIONS 2
3 DATA
ANALYSIS
4 RESULTS AND DISCUSSIONS

15

1. Experimental Section

1.1 Synthesis of HZIF-ZnMo precursor

HZIF-ZnMo was synthesized on a typical procedure ^[1-2]. The mixture of $Zn(CH_3COO)_2 \cdot 2H_2O$ (5.28g, 24 mmol), 2-mim (2.88g, 36 mmol), H₂MoO₄ (0.99 g, 6 mmol) and 120 ml DMF was kept stirring at 160°C for 6 hours in a 250ml round bottom flask. After a naturally cooling process, the white HZIF-ZnMo powder product obtained with the yield of 35%. The powder was then filtered and washed by ethanol for three times, and then dried at room temperature.

1.2 Synthesis of ZIF-Zn precursor

ZIF-Zn was synthesized on a typical procedure, according to the synthesis of ZIF-8^[3]. The solution of $Zn(NO_3)_2.6H_2O(5.95 \text{ g}, 20 \text{ mmol})$ in methanol (150 mL) was mixed with another solution of 2-mim (6.16 g, 75 mmol) in methanol (150 mL) and then fast stirred for 5 mins and kept in room temperature for 24 hours. As a result, the white ZIF-8 product (yield of 6.8 %) was filtered and washed by ethanol for three times, and then dried at room temperature.

1.3 Synthesis of H-HZIF-ZnMo and H-ZIF-Zn

HZIF-ZnMo and ZIF-Zn (0.3 g) powders were dispersed into the solution of 1.5 g tannic acid and 300 mL water, respectively, and then kept stirring for 10 mins. After that, the products of H-HZIF-ZnMo and H-ZIF-Zn were centrifuged and washed by water and ethanol separately for three times. After drying in vacuum oven at 60 °C for 3 hours, the 250 mg of earthy yellow H-HZIF-ZnMo and 240 mg of earthy yellow H-ZIF-Zn powder were obtained.

1.4 Synthesis of H-MoC/NC and H-NC

500 mg of above synthesized H-HZIF-ZnMo and H-ZIF-Zn were placed in corundum boats, respectively, and then heated to 900 °C through a rate of 8 °C/min at a tube furnace under the nitrogen

flow. After the keeping temperature at 900 °C for 2 hours, the samples were cooled down to room temperature naturally. The black powders of H-MoC/NC and H-NC were obtained.

1.5 Synthesis of MoC/NC and NC

As the contrast samples, the solid MoC/NC and NC were synthesized through the similar calcination process from the untreated HZIF-ZnMo and ZIF-Zn precursors (products in 1.1 and 1.2 steps).

Figure S1. The scheme of the synthesis routes for all the samples in this work.

2. Characterizations

D8 DAVANCI X-ray powder diffractometer equipped with graphite monochromatized Cu Ka radiation ($\lambda = 0.1542$ nm) was used to record powder X-ray diffraction (PXRD) patterns in the 20 range of 5°-80° with a scanning rate of 1 °/min. The specific surface area was measured by nitrogen adsorption and desorption at 77 K by ASAP 2020 sorption system. Scanning electron microscopy (SEM) images were collected by a Hitachi S4800 apparatus with an acceleration voltage of 2 kV. The transmission electron microscopy (TEM) images were recorded on a JEM-2010HR apparatus working at an accelerating voltage of 200 kV and X-ray energy-dispersive spectroscopy (EDS) was taken on a

JEM-2010HR-Vantage typed energy spectrometer. X-ray photoelectron spectroscopy (XPS) was implemented on Thermo ESCA Lab250XI. The surface area (BET) of the samples was measured by N_2 adsorption and desorption at 77K using an ASAP 2020 sorption system. Raman spectroscopy of the samples was obtained by a Renishaw in Via Raman Microscope. The electromagnetic parameters were analyzed using a HP8753D vector network analyzer in the frequency range of 2-18 GHz. The measured samples were dispersed in paraffin homogeneously with a sample-to-paraffin weight ratio of 3:17, and then the mixture was pressed into a toroidal shape with an inner diameter of 2.0 mm and an outer diameter of 7.0 mm. The conductivity of the samples (1 cm \times 1 cm) was performed through a ST2253 four-probe resistance meter.

3. Data analysis

Cole–Cole semicircle model (Equation S1):

$$(\varepsilon' - \frac{\varepsilon_{s+} \varepsilon_{\infty}}{2})^2 + (\varepsilon'')^2 = (\frac{\varepsilon_{s-} \varepsilon_{\infty}}{2})^2$$
(Equation S1)

Each semicircle in the $\varepsilon' - \varepsilon''$ curve stands for a polarization relaxation process. The ε_s and ε_{∞} represent the static dielectric constant, the dielectric constant at infinite frequency, respectively. The high number of semicircles means the strong dipole polarization process.

Debye relaxation correction formula (Equation S2-3):

$$\varepsilon_r = \varepsilon_{r\infty} + \frac{\varepsilon_{rs} - \varepsilon_{r\infty}}{1 + (i\omega\tau)^{1-A}} \ (0 < A < 1)$$
(Equation S2)

$$\varepsilon_{r}^{'} = \varepsilon_{r\infty} + (\varepsilon_{rs} - \varepsilon_{r\infty}) \frac{1 + (\omega\tau)^{(1-A)} \sin \frac{\pi A}{2}}{1 + 2(\omega\tau)^{1-A} \sin \frac{\pi A}{2} + (\omega\tau)^{2(1-A)}} \qquad (Equation S3)$$

 ε_p^{μ} and ε_c^{ν} are the dielectric loss contributed by polarization relaxation and charge transport, respectively, which can be obtained according to Debye theory (Equation S4-6).

$$\varepsilon_c'' = \frac{\sigma}{2\pi f \varepsilon_0}$$

(Equation S4)

$$\varepsilon_{p}^{"} = \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + (2\pi f)^{2} \tau^{2}} \omega \tau = \varepsilon^{"} - \varepsilon_{c}^{"} \qquad (Equation S5)$$

$$\varepsilon'' = \frac{\varepsilon_s - \varepsilon_\infty}{1 + (2\pi f)^2 \tau^2} \omega \tau + \frac{\sigma}{2\pi f \varepsilon_0} = \varepsilon_p'' + \varepsilon_c'' \qquad (Equation S6)$$

Where ε_s is the relative permittivity at static, and ε_{∞} is that at "infinite" high frequency. σ is the conductivity, Conductivity is a parameter used to describe the difficulty of charge flow in matter.

The attenuation coefficient (α):

$$\alpha = \frac{\sqrt{2\pi}f}{C} \sqrt{\left(\mu^{''}\varepsilon^{''} - \mu^{'}\varepsilon^{'}\right)} + \sqrt{\left(\mu^{''}\varepsilon^{''} - \mu^{'}\varepsilon^{'}\right)^{2} + \left(\mu^{'}\varepsilon^{''} + \mu^{''}\varepsilon^{'}\right)^{2}} \qquad (Equation S7)$$

The reflection loss (R_L) values of the absorbers are calculated according to transmission line theory by the following equation S8-9:

$$R_{L}(dB) = 20lg \left| \frac{Z_{in} - Z_{0}}{Z_{in} + Z_{0}} \right|$$

$$Equation S8$$

$$Z_{in} = Z_{0} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \tanh\left[j \left(\frac{2\pi f d}{c} \right) \sqrt{\mu_{r} \varepsilon_{r}} \right]$$
(Equation S9)

Where Z_0 is the characteristic impedance of free space, Z_{in} is the normalized input impedance of absorber, ε_r and μ_r are the relative complex permittivity and permeability, *d* is the layer thickness, *c* is the speed of light in free space and *f* is the frequency.

The absorption peak shifts toward low frequency with increasing the thickness, which can be explained by Equation S10 according to quarter-wavelength matching model:

$$d_m = \frac{n\lambda}{4} = \frac{nc}{4f_m \sqrt{|\varepsilon_r||\mu_r|}} \qquad (n = 1, 3, 5, ...)$$
(Equation S10)

The d_m and f_m in the equation represent the matching thickness and the matching frequency, respectively. The interference effect between the reflected and incident microwave will result in the microwave energy dissipation when the d_m and f_m value accords with Equation S10.

4. Results and discussions

Figure S2. The crystalline structure of ZIF-Zn (a) and HZIF-ZnMo (b), the PXRD results of synthesized ZIF-Zn and H-ZIF-Zn (c), HZIF-ZnMo and H-HZIF-ZnMo (d).

Figure S3. The SEM (a-b), TEM (c) and the TEM-EDS mapping (d) of ZIF-Zn.

Figure S4. The SEM (a-b), TEM (c) and the TEM-EDS mapping (d) of NC.

Figure S5. The SEM (a), SEM-EDS mapping (b), TEM (c) and the TEM-EDS mapping (d) of H-

ZIF-Zn.

Figure S6. The SEM (a), SEM-EDS mapping (b), TEM (c) and the TEM-EDS mapping (d) of H-NC.

Figure S7. The SEM (a-b), TEM (c) and the TEM-EDS mapping (d) of HZIF-ZnMo.

Figure S8. The SEM (a-b), TEM (c) and the TEM-EDS mapping (d) of MoC/NC.

Figure S9. The SEM (a), SEM-EDS mapping (b), TEM (c) and the TEM-EDS mapping (d) of H-

HZIF-ZnMo.

Figure S10. The SEM (a), SEM-EDS mapping (b), TEM (c) and the TEM-EDS mapping (d) of H-

MoC/NC.

Figure S11. The PXRD of the MoC/NC (blue), H-MoC/NC (green), and NC (black), H-NC (red).

Figure S12. The Raman spectrum of the MoC/NC (blue), H-MoC/NC (green), and NC (black), H-NC (red). Peaks of D band and G band lie at 1350 cm⁻¹ and 1590 cm⁻¹.

Figure S13. The survey XPS spectrum (a) of H-MoC/NC, MoC/NC, H-NC and NC. The XPS spectrums of C 1s (b), spectrum in H-MoC/NC, MoC/NC, H-NC and NC.

Figure S14. The real part of permittivity (a), imaginary part of permittivity (b), dielectric loss tangent (c) of H-MoC/NC, MoC/NC, H-NC and NC.

Figure S15. The Cole-Cole curves of H-MoC/NC, MoC/NC, H-NC and NC.

Figure S16. Real part of permittivity of measured and empirical formula fitted of of NC, H-NC, MoC/NC, H-MoC/NC (a). The interface factor A values of NC, H-NC, MoC/NC, H-MoC/NC (b).

Figure S17. The 3D RL and the effective frequency bandwidth (RL < -10 dB) of

NC (a, e), H-NC (b, f), MoC/NC (c, g), H-MoC/NC (d, h).

Figure S18. The best of R_L values and the effective frequency bandwidth (RL < -10 dB) of NC (a), H-NC (b), MoC/NC (c), H-MoC/NC (d).

Table S1. Co	omparison of	microwave al	bsorption p	performance	of H-MoC/	NC with

Absorber	$R_{\rm L}$ (dB)	Thickness (mm)	Range (<-10 GHz)	e _f (GHz)	Loading (wt %)	SR _L	Ref.
ZnFe ₂ O ₄ @C@MoS ₂ /FeS ₂	-52.50	2.23	10.10-15.08	4.98	35%	-150	10
MoS ₂ @M _{x-2}	-51.00	4.00	6.00-10.80	4.80	30%	-170	11
Al@MoS ₂ /rGO	-33.38	1.30	25.42-29.18	3.76	35%	-95	12
MoS ₂ @C	-56.97	5.00	12.56-18.00	5.44	35%	-163	13
MSCF8	-45.88	2.20	8.20-13.82	5.62	35%	-131	14
PPy@MoS ₂	-49.10	2.50	11.50-17.50	6.10	40%	-123	15
MoS ₂ /Fe@Fe ₃ O ₄	-31.80	1.52	13.20-18.00	4.80	35%	-91	16
CoS ₂ @MoS ₂ -2	-31.12	3.10	14.85-17.21	2.36	35%	-89	17
Co _x S _y /C@MoS ₂	-41.32	3.30	7.24-10.91	3.67	35%	-118	17
Mo ₂ C/C	-49.19	2.60	8.00-11.96	3.96	20%	-246	18
H-MoC/NC	-41.20	2.00	11.76-16.96	5.20	15%	-275	This Work

other MOFs-derived carbon absorbers.

Figure S19. EMW absorption performance of Mo-based materials: comparison of SR_L (ratio of *RL*/loading amount), effective bandwidth and thickness.

Figure S20. The colour disk for electric field distribution diagram, colour represents direction and

brightness represents intensity.

5. References

- 1. F. Wang, Z. S. Liu, H. Yang, Y. X. Tan, and J. Zhang, Hybrid zeolitic imidazolate frameworks with catalytically active TO4 building blocks. Angew. Chem. Int. Ed., 2011, 50(2): 450-453.
- 2. P. Liu, S. Gao, W. Huang, J. Ren, D. Yu, and W. He, Hybrid zeolite imidazolate framework derived N-implanted carbon polyhedrons with tunable heterogeneous interfaces for strong wideband microwave attenuation. Carbon, 2020, 159: 83-93.
- 3. Park, K.; Ni, Z.; Côté, A.; Choi, J.; Huang, R.; Uribe-Romo, F.; Chae, H.; O'Keeffe, M.; Yaghi, O. Proceedings of the National Academy of Sciences 2006, 103(27), 10186-10191.
- 4. Pan F, et al. Lotus Leaf-Derived Gradient Hierarchical Porous C/MoS₂ Morphology Genetic Composites with Wideband and Tunable Electromagnetic Absorption Performance. Nano-Micro Letters 13, (2021).
- 5. X. Yan, X. Huang, Z. Bo, W. Tong, H. Wang et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 391, 123538 (2020).
- 6. H.Wang, F.Meng, F.Huang, C. Jing, Y. Li et al., Interface modulating CNTs@PANI hybrids by controlled unzipping of the walls of cnts to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 11, 12142–12153 (2019).
- X. Li, E. Cui, Z. Xiang, L. Yu, J. Xiong et al., Fe@NPC@CF nanocomposites derived from Fe-MOFs/biomass cotton for lightweight and high-performance electromagnetic wave absorption applications. J. Alloys Compd. 819, 152952 (2020).

- 8. E. Cui, F. Pan, Z. Xiang, Z. Liu, L. Yu, et al., Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 2000827 (2020).
- S. Wang, S. Peng, S. Zhong, W. Jiang, Construction of SnO₂/Co₃Sn₂@C and SnO₂/Co₃Sn₂@air@C hierarchical heterostructures for efficient electromagnetic wave absorption. J. Mater. Chem. C 6, 9465–9474 (2018).
- 10. Liao Z, et al. Fabrication of one-dimensional ZnFe₂O₄@carbon@MoS₂/FeS₂ composites as electromagnetic wave absorber. J Colloid Interface Sci 600, 90-98 (2021).
- 11. Hassan A, et al. Modulating dielectric loss of $MoS_2@Ti_3C_2T_x$ nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations. Ceramics International 47, 20706-20716 (2021).
- 12. Prasad J, Singh AK, Tomar M, Gupta V, Singh K. Hydrothermal synthesis of micro-flower like morphology aluminum-doped MoS₂/rGO nanohybrids for high efficient electromagnetic wave shielding materials. Ceramics International 47, 15648-15660 (2021).
- Ye S, et al. Carbon encapsulation of MoS₂ nanosheets to tune their interfacial polarization and dielectric properties for electromagnetic absorption applications. Journal of Materials Chemistry C 9, 537-546 (2021).
- 14. Lyu L, et al. Constructing 1T/2H MoS₂ nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. J Colloid Interface Sci 586, 613-620 (2021).
- 15. Gai L, et al. Construction of core-shell PPy@MoS₂ with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism. Composites Part A: Applied Science and Manufacturing 136, (2020).
- Wang P, et al. Synthesis and characterization of MoS₂/Fe@Fe₃O₄ nanocomposites exhibiting enhanced microwave absorption performance at normal and oblique incidences. Journal of Materials Science & Technology 35, 1931-1939 (2019).
- 17. Zhu Q, et al. Co_xS_y/C@MoS₂ nanofibers: synthesis, characterization and microwave absorption investigation. Journal of Materials Science: Materials in Electronics, (2020).
- 18. Dai S, et al. Porous-carbon-based Mo₂C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale 10, 6945-6953 (2018).