Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Li-In alloy anode and Nb_2CT_X artificial solid-electrolyte interphase for practical Li metal batteries.

Seunghun Lee^{†, a, b}, Mun Sek Kim^{†c}, Jung-Hoon Lee^d, Ji-Hyun Ryu^{a, b}, Vandung Do^a, Byeong Gwon Lee^{a,b}, Woong

Kim*b and Won Il Cho*a, b

^aCenter for Energy Storage Research, Korea Institute of Science and Technology (KIST), Hwarangno 14 -gil 5, Seongbuk-gu,

Seoul, 02792, Republic of Korea

^b Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea

^c Department of Chemical Engineering, Stanford University, 450 Serra Mall, Stanford, California, 94305, USA.

^d Computational Science Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-

gu Seoul, 02792, Republic of Korea

⁺ first author

*Corresponding Author

W. Kim. E-mail: woongkim@korea.ac.kr

W. I. Cho. E-mail: wonic@kist.re.kr

This supporting figure includes:

Fig. S1. Li-In phase diagram¹.

Fig. S2. XRD patterns of Li-In alloy anode after Li stripping or plating

Fig. S3. BSE, EDX element mapping, FIB-SEM cross-sectional image of Li-In alloy anode after Li stripping.

Fig. S4. Molecular structure of $Li_{13}In_3$ unit cell and Li diffusion pathway on (311) surface of $Li_{13}In_3$.

Fig. S5. SEM image and corresponding EDX element mapping image of Nb₂CT_X MXene and Nb₂AlC MAX phase.

Fig. S6. XRD patterns of Nb₂AlC and Nb₂CT_X.

Fig. S7. Wide scan XPS spectra of Nb₂CT_X MXene and Nb₂AlC MAX phase.

Fig. S8. Optical image of manufacturing process and SEM images of Nb₂CT_X Li-In anode.

Fig. S9. XRD profile of Nb2CT_X Li-In anode.

Fig. S10. Practical areal capacity measurement of Nb₂CT_X Li-In anode.

Fig. S11. SEM surface morphologies of Li anode and Li-In alloy anode after re-electrodeposition of Li.

Fig. S12. Galvanostatic Li stripping/plating voltage profile.

Fig. S13. Full cell cycling performance and corresponding voltage profile of Nb₂CT_X Li anode.

Fig. S14. AC impedance measurement for Li|NCM 811, Li-In|NCM 811, Li-In Nb₂CT_X|NCM 811.

Fig. S15. Li-In foil thickness and further roll-pressing results.

Table S1. The calculation for termination group formation energy and Li binding energy on the Nb_2CT_X surface.

Table S2. Li-In foil thickness before and after roll-pressing.

Fig. S1. Li-In phase diagram. The red dashed vertical line represents 80 wt% of Li (98.51 at % of Li) and 20 wt % of In (1.49 at % of In) composition. At the designed composition, Li-In alloy consists of 74.68 wt % of Li and 25.32 wt % of Li₁₃In₃.

Fig. S2. XRD patterns for Li-In alloy anode after a) 4 mAh cm⁻² of Li stripped, b) 4 mAh cm-2 Li deposited back to a), c) 37.5 mAh cm⁻², d) 39.0 mAh cm⁻², e) 39.5 mAh cm⁻², f) all of Li stripped from Li-In alloy anode. Phase transition from Li₁₃In₃ to In was observed after 37.5 mAh cm⁻² of Li stripped (Li₁₃In₃ \rightarrow Li₂In \rightarrow LiIn \rightarrow In). XRD peak of Li, Li₁₃In₃, Li₂In, LiIn, and In notice with the filled circle, empty-triangle, filled-diamond, empty-square, and empty-star shape, respectively.

Fig. S3. a) SEM BSE mode micrographs of the Li-In alloy anode after 4 mAh cm⁻² galvanostatic stripping of Li using Li-In|Li-In symmetric cell. Bright particles are Li-In alloy (Li₁₃In₃), and the dark background is pristine Li. b) Corresponding EDX element mapping image for In (red). c) FIB cross-section image of Li-In after Li stripping with the same conditions as a). In the electrode's upper region, most of the Li was stripped, and only the light-colored Li1₃In₃ remains, showing an irregular porous structure, and the remained Li shows dark in the lower part of the image.

Fig. S4. a) The optimized crystal structure of $\text{Li}_{13}\text{In}_3$. The space group is the cubic Fd³m with the lattice parameters a = b = c = 13.55 Å and $\alpha = \beta = \gamma = 90^{\circ}$. Visualization of the Li migration on the (311) surface of the Li₁₃In₃ along b) pathway 1 (Li₁₃In₃•), c) pathway 2 (Li₁₃In₃••). The first configuration is the initial state of the diffusion process that Li adsorbed on the most stable adsorption site on the (311) of L₁₃In₃ and considered as 0 eV. The adsorbed Li migrates following its stable energetic position, and each image shows the Li when it was located at a local minimum. Values below each image are relative energy calculated with respect to the energy at the initial state. Blue and yellow spheres are In and Li of L₁₃In₃, and the red sphere is the migrating Li adatom.

Fig. S5. SEM image and EDX element mapping images of a) Nb₂CT_X (MXene) and b) Nb₂AlC (MAX phase). EDX element mapping images in both contents correspond with Nb L (purple), C K (red), Al K (yellow), F K (blue), O K (oxygen) peak.

Fig. S6. XRD profiles of Nb₂AlC (bottom, black) and Nb₂CT_X (top, red). Marks on the graph correspond to the major XRD peaks Nb₂AlC (black triangle), Nb₂CT_X (red star). After the synthesis, significant changes of several peaks indicate the transformation of MAX phase to MXene; the (103) peak of Nb₂AlC, around 2 of 39, disappears after synthesis, and the (002) peak of Nb₂AlC corresponding to 2 of 12.9 shifts to a lower angle. Disappeared (103) peak represents that Al layer was removed, and shifted (002) peak means that inter-layer space of Nb₂CT_X was increased.

Fig. S7. a) Wide scan XPS spectra of Nb_2CT_X (MXene) and Nb_2AlC (MAX phase), b) High resolution XPS spectra of Nb_2AlC (black) and Nb_2CT_X (red) at Al 2p region.

Fig. S8. Preparation and morphologies of the Nb₂CT_x Li-In anodes. Optical image of the a) Nb₂CT_x ASEI on Cu foil using the Langmuir–Blodgett scooping (LBS) method; b) Nb₂CT_x Cu and Li-In foil (left), Nb₂CT_x Li-In right after Nb₂CT_x ASEI transfer to Li-In via roll pressing (middle) and Nb₂CT_x Li-In after 3 days in a dry capsule (right). c) Largearea SEM image (left, top view), enlarged SEM image (middle, top view), and SEM image (right, cross section view) of the Nb₂CT_x Li-In anode.

Fig. S9. XRD profile of the Nb_2CT_X Li-In anode. The XRD peaks of Nb_2CT_X and $Li_{13}In_3$ are indicated by the filled star and empty triangle symbols, respectively.

Fig. S10. Practical areal capacity measurement for Nb₂CT_X Li-In and Li-In alloy anode using symmetric cell. Voltage profile taking at a fixed current density of 1 mA cm⁻² with voltage cut-off at 1V. The areal masses of Nb₂CT_X Li-In and Li-In alloy anodes are 13.52 mg cm⁻² and 13.24 mg cm⁻². Capacities of Nb₂CT_X Li-In and Li-In alloy anodes are 39.63 mAh cm⁻² (2926.64 mAh g⁻¹) and 39.97 mAh cm⁻² (3021.44 mAh g⁻¹). The areal capacity of Nb₂CT_X Li-In alloy anode was slightly reduced due to pressure during roll pressing process for transfer of Nb₂CT_X ASEI. The inset shows the enlarged voltage profile from 0 to 1.0 mAh cm⁻² with voltage profile of pure Li from Fig. 1b.

Fig S11. SEM surface morphologies of galvanostatic Li re-electrodeposition onto the f) Li anode and g) Li-In alloy anode after Li stripping of 4mAh cm⁻² at a fixed current density of 1 mAh cm⁻² and capacity of 4 mAh cm⁻².

Fig. S12. Galvanostatic Li stripping/plating voltage profiles for the Li (black), Li-In (red) and Nb₂CT_X ASEI Li-In (blue) anodes. Voltage profiles were measured by Li|Li, Li-In|Li-In, and Li-In Nb₂CT_X|Nb₂CT_X Li-In symmetric cells at a) 1 mA cm⁻²/1 mAh cm⁻² and b) 2 mA cm⁻²/2 mAh cm⁻².

Fig. S13. a) Electrochemical full cell cycling performance with Li Nb₂CT_X|NCM811 based on discharge capacity (filled symbols, left axis) and Coulombic efficiency (empty symbols, right axis). The full cell was fabricated at an n/p ratio of 11.0 and by using an electrolyte of 8.6 μ L mAh⁻¹. Operating conditions of full-cell cycling were 0.5 C for charging, 1.0 C for discharging, and voltage window of 2.7–4.3 V. The first highest discharge capacity point was measured at formation cycle (0.1 C charge & discharge); the yellow dashed line indicates 80% of the initial discharge capacity of each cell. b) Corresponding voltage profiles of Li Nb₂CT_X|NCM811.

Fig. S14. Nyquist plots after 1st, 5th, 10th, and 15th cycle for a) Li|NCM811, b) Li-In|NCM811, c) Li-In Nb₂CT_X|NCM811 full cell.

Fig. S15. Li-In foil thickness and roll-pressing results. a) Pristine Li-In foil from the company (Honzo metal, Japan), b) roll-pressed Li-In foil (average thickness of \sim 156 µm), and c) roll-pressed Li-In foil (average thickness of \sim 137 µm).

	Nb ₂ C-O-Li	Nb ₂ C-F-Li	Nb ₂ C-OH-Li	
Atomic structure				
Termination group formation E	-7.213 eV	-6.238 eV	-6.209 eV	
Li binding E	-1.577 eV	-1.516 eV	+0.814 eV	
	Nb ₂ C-O, F-Li	Nb ₂ C-O, OH-Li	Nb ₂ C-F, OH-Li	
Atomic structure				
Termination group formation E	-6.663 eV	-6.846 eV	-6.279. eV	
Li binding E	-1.409 eV	-0.818 eV	-0.249. eV	
	Nb • C	Li 💿 F 🕒 O	₀ H	

Table S1. The calculation of termination group formation energy and Li binding energy on the Nb₂C (MXene) surface. Images in the table are Nb_2CT_X atomic structure with termination groups and Li adatoms. Cyan blue, brown, green, purple, red, and pink spheres are Niobium, Carbon, Lithium, Fluorine, Oxygen, and Hydrogen atom, respectively.

No.	Thickness (µm)								
	1	2	3	4	5	6	7	Ave.	Max. error
a)	200	200	200	199	200	200	201	200	1
b)	143	157	148	161	164	154	165	156	13
c)	135	133	142	123	143	137	143	137	12

Table S2. Li-In foil thickness before and after roll-pressing from Fig. S15

References

1 J. Sangster and A. D. Pelton, 1991, **12**, 290–292.