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Figure S1 Normalized PL emission spectra of different CDs at different excitation wavelengths.
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Figure S2 The effect of the molar ratio of CA/Urea on the fluorescence intensity of Y-CDs during 
the heating processes. (a) 0.1, (b) 0.14, (c) 0.2 and (d) 0.4.

Figure S3 The effect of reaction temperature on the fluorescence intensity of Y-CDs during the 
heating processes. (a) 150 C, (b) 160 C, (c) 170 C and (d) 180 C.



Figure S4 AFM images of (a) B-CDs and (b) Y-CDs, inset: the height profile along the line.

Figure S5 Hydrated radius of Y-CDs (a) and B-CDs (b) measured from DLS analyzer.

Table S1 The atomic percentages of B-CDs and Y-CDs.
Sample C N O

Y-CDs 68.27% 8.03% 23.7%
B-CDs 84.05% 3.22% 12.73%

Table S2 XPS data analyses of the C 1s spectra of B-CDs and Y-CDs.
Sample C-C/C=C C-N/C-O C=O COOH

Y-CDs 0.378 0.071 0.301 0.250
B-CDs 0.606 0.070 0.232 0.092

Table S3 Fitted parameters of the fluorescence decay curves of Y-CDs at different temperatures.  
T(℃) f1(%) τ1 (ns) f2(%) τ2 (ns) τave (ns)

20 6.25 4.6366 93.75 8.3583 8.12
40 10.12 5.1493 89.88 8.5011 8.16
60 6.42 4.5467 93.58 8.3737 8.13



Table S4 Fitted parameters of the fluorescence decay curves of B-CDs at different temperatures. 
T(℃) f1(%) τ1 (ns) f2(%) τ2 (ns) τave (ns)

20 32.08 0.5074 67.92 4.8395 3.45
40 34.65 0.4988 65.35 4.3557 3.02
60 40.02 0.4858 59.98 3.7272 2.43

Figure S6 (a) LC-MS spectra of Y-CDs at different retainment time (left) and the spectra 
corresponding to T12.42 (right). (b) The presumable decomposition process of Y-CDs.

Figure S7 (a) The chemical shifts of different hydrogen atoms in Y-CDs estimated by ChemDraw 
Ultra 7.0, and the estimation quality can be denoted by the color of value (blue=good, red=rough). 
(b) 1H-NMR spectra of Y-CDs in DMSO-d6 at different temperatures (black line: 298k, blue line: 
313k, red line: 328k). 



Figure S8 (a) Fluorescence spectra of Y-CDs in H2O and CH3CN. (b) Fluorescence spectra of Y-
CDs in CH3CN at different temperatures. Hydrated radius of Y-CDs in aqueous solution (c) and 
CH3CN (d) at different test temperatures from DLS measurements. 

Figure S9 (a) Plot of (αhν)1/2 versus (hν) for the band gap energy. Inset: UV–Vis DRS. (b) The 
calculated fluorescence spectrum of Y-CDs. (c) The calculated absorption spectrum of Y-CDs. 



Figure S10 (a) Plot of (αhν)1/2 versus (hν) for the band gap energy. Inset: UV–Vis DRS. (b)The 
optimized models of B-CDs ranging from seven to nine polyaromatic rings based on DFT 
calculations. (c) Optimized eight-ring structures with substituents locating at different sites. 
(d)The calculated HOMO and LUMO energy levels for optimized 8-2c. 

Figure S11 (a) Fluorescence spectra of Y-CDs solution at different concentrations. (b) The 
concentration-dependent properties of Y-CDs. The concentrations from left to right are 5, 1, 0.5, 
0.1, 0.05 and 0.01 mg/mL, respectively. (c) Photos of Y-CDs powders under daylight (left) and 
UV light (right).



Figure S12 Fluorescence spectra of Y-CDs solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of Y-CDs solution at 15 C and 85 C during six cycles. 

Figure S13 The temperature resolution of Y-CDs in the range from 15 °C to 85 °C.

Figure S14 Fluorescence spectra of Y-CDs solution at different NaCl concentrations (a) and pH 
values (b).



Figure S15 Viability of HeLa cells after 24 h incubation at different concentrations of the Y-CDs.

Table S5 The thermosensitivity of as-prepared “light-on” fluorescence CDs with different carbon 
sources.

Thermosensitive 
signal

Code 
name

Precursors
Synthesis 
method

Eluent
(CH2Cl2

:CH3OH)

ex/em

(nm)

Thermal 
sensitivity

(％/℃)

Linear 
responses

Intramolecular 
hydrogen 

bonds

Y-CDs Urea/CA
Solvothermal
160 ℃, 6 h

1:1 425/540 0.45
y=0.11x+24.4

R2=0.994


CDs-2
1,2-diaminobenzene 

/hydroquinone
Solvothermal
180 ℃, 6 h

8:1 450/557 0.81
y=0.37x+39.36

R2=0.989


CDs-3
1,2-diaminobenzene 

/CA
Solvothermal
180 ℃, 6 h

8:1 450/547 1.1
y=0.14x+9.41

R2=0.987


CDs-4
2,4-diaminotoluene

/CA
Solvothermal
160 ℃, 5 h

5:1 480/580 0.89
y=0.31x+27.40

R2=0.992


CDs-5
2,4-diaminotoluene 

/benzoic acid
Solvothermal
160 ℃, 5 h

5:1 445/507 3.0
y=0.14x+1.85

R2=0.989


CDs-6
2,4-diaminotoluene 

/phloroglucinol
Solvothermal
160 ℃, 5 h

5:1 500/580 1.5
y=0.23x+11.48

R2=0.999


CDs-7
4-aminobenzoic 
acid/resorcinol

Solvothermal
160 ℃, 5 h

3:1 375/475 1.1
y=0.23x+17.35

R2=0.991


Turn-on

CDs-8 CA/resorcinol
Solvothermal
160 ℃, 6 h

6:1 425/550 5.3
y=0.46x1.99

R2=0.991




Table S6 Comparison of thermosensitivity with different CDs materials.

Temperature-
sensitive 

signal
Carbon precursor Solvent

λem

(nm)

Temperature 
range
(℃)

Thermal
Sensitivity

(%/℃)
Ref.

Urea/CA CH3CN 500 1585 2.0
This 
work

2,4-Diaminotoluene/
benzoic acid

H2O 550 1585 5.3
This 
work

CA/thionine H2O 650 480 1.2 1

Carbon nanopowders H2O 430 2595 0.75 2

α-mangostin / 599 0150 0.53 3

Turn-on

Formamide/glutathione H2O 460, 685 560 3.7 4

Cetylpyridinium/chloride H2O 460 2080 0.33 5

CA/N-acetyl-L-cysteine H2O 420 575 0.41 6

Sodium citrate/L-cysteine
/rhodamine B

H2O 450, 595 10100 1.4 7

Glucose/glutathione H2O 494 1590 0.69 8

Methionine/acrylic acid H2O 485 2575 1.2 9

CA/urea H2O 440, 590 1585 0.93 10

Ethanediamine/urea H2O 475 2080 0.85 11

CA/
N-aminoethylpiperazine

H2O 440 2595 0.23 12

D. officinale H2O 448, 660 575 0.57 13

CA/ethylenediamine / 445 080 0.68 14

Ethylenediamine H2O 400, 465 585 1.5 15

Turn-off

Sucrose H2O 450, 517 860 2.1 16



Figure S16 Fluorescence spectra of CDs-2 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-2 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-2. 

Figure S17 Fluorescence spectra of CDs-3 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-3 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-3.



Figure S18 Fluorescence spectra of CDs-4 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-4 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-4. 

Figure S19 Fluorescence spectra of CDs-5 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-5 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-5. 



Figure S20 Fluorescence spectra of CDs-6 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-6 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-6. 

Figure S21 Fluorescence spectra of CDs-7 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-7 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-7.



Figure S22 Fluorescence spectra of CDs-8 solution during heating (a) and cooling (b) processes. 
(c) Fluorescence spectra of CDs-8 solution at 15 C and 85 C during six cycles. (d) DSC curve of 
CDs-8. 

Figure S23 (a) Fluorescence spectra of blue-emitting CDs prepared from o-phenylenediamine and 
CA during the heating processes and (b) the corresponding DSC curve. (c) Fluorescence spectra of 
yellow-emitting CDs prepared from o-phenylenediamine and catechol during the heating 



processes and (d) the corresponding DSC curve.
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