Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting information

Highly Exfoliated Ti₃C₂T_x MXene Nanosheets Atomically Doped with Cu for Efficient Electrochemical CO₂ Reduction: An Experimental and Theoretical Study

Kamel Eid^{a*}, Qingqing Lu^b, Safwat Abdel-Azeim^c, Ahmed Soliman^a, Aboubakr M. Abdullah^d, Ahmed M. Abdelgwad^a, Roy P. Forbes^e, Kenneth I. Ozoemena^e, Rajender S. Varma^{f*}, and Mohamed F. Shibl^g

- ^{a.} Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar
- ^{b.} Engineering &Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- ^{c.} Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- ^{d.} Center for advanced materials, Qatar University, Doha 2713, Qatar
- ^{e.} Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, P O Wits, Johannesburg 2050, South Africa
- ^{f.} Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
- ^{g.} Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar

*Corresponding authors: kamel.eid@qu.edu.qa and varma.rajender@epa.gov

Table of contents

Supporting	Title	Page		
material		number		
Methodology	Electrochemical CO ₂ reduction reaction (CO ₂ RR)	S3		
Methodology	Fabrication of the working electrode			
Methodology	Density functional theory simulation details			
Figure S1	SEM image of Ti ₃ AlC ₂			
Figure S2	XRD of Cu/Ti ₃ C ₂ T _x and Ti ₃ C ₂ T _x .	S7		
Figure S3	Powder X-ray diffraction retrieve of $Ti_3C_2T_x$ as a function of Tx (Tx= F, O, and OH).			
Figure S4	(a) The constant potential electrolysis (CPE) tests measured in a CO_2 -saturated 0.1	S9		
	M NaHCO ₃ solution at room temperature at -1.5 V and (b) the calculated j/j_o percent			
	after 200 min for Cu/Ti ₃ C ₂ T _x relative to Ti ₃ C ₂ T _x .			
Figure S5	(a) TEM image, (b) EDX analysis, and (c) XPS survey of $Cu/Ti_3C_2T_x$ after CPE durability	S9		
	test. The table in (b) shows the estimated composition before and after stability,			
	teste determined using the EDX.			
Figure S6	Top and side view of $*CO_2$ (a,b), $*COOH$ (c,d), $*HCOOH$ (e,f) intermediates optimized	S10		
	on Ti ₃ C ₂ T _x (T _x =F)			
Figure S7	Top and side view of *CO ₂ (a,b),*COOH (c,d), *HCOOH (e,f) intermediates optimized	S11		
	on Ti ₃ C ₂ T _x (T _x =O)			

Figure S8	Top and side view of $*CO_2$ (a,b), $*COOH$ (c,d), $*HCOOH$ (e,f) intermediates optimized				
	on $Ti_3C_2T_x$ ($T_x=F$, O, and OH)				
Figure S9	Top and side view of $*CO_2$ (a,b), $*COOH$ (c,d), $*HCOOH$ (e,f) intermediates optimized	S13			
	on $Cu/Ti_3C_2T_x$ (T _x =F, O, and OH)				
Figure S10	Top (a) and side view (b) of *COOH intermediate optimized on $Cu/Ti_3C_2T_x$ (T _x =F, O,	S14			
	and OH)				

Electrochemical CO₂ reduction reaction (CO₂RR)

The electrochemical cyclic voltammogram (C.V.s), linear sweep voltammogram (LSV), impedance spectroscopy (EIS), and constant potential electrolysis (CPE) were measured using a Gamry electrochemical analyzer (reference 3000, Gamry Co., USA). The electrochemical three-electrode cell consisted of a Pt wire (counter centrode), Ag/AgCl (reference electrode), and glassy carbon ((G.C.), working electrode). All the measurements were carried out in an aqueous solution of 0.1 M NaHCO₃ at room temperature. After measurements, the liquid products were collected and analyzed using the nuclear magnetic resonance (NMR) 600 MHz (NMR, JEOL). ¹H-NMR measurements were carried out at 400.2 MHz in the presence of D₂O solution (35 μ L) of 10mM dimethyl sulfoxide (DMSO) and 50 mM phenol as the internal standards. Standard formic acid (0, 10, 30, and 50mM) solutions mixed with the D₂O solution (35 μ L) containing 10 mM DMSO and 50mM phenol were prepared to quantify the amount of formic acid in the electrolytes. Then, the relative area of the HCOO- signal concerning phenol was plotted versus HCOO-concentration to obtain a calibration curve. For ¹³C-NMR deuterated chloroform (CDCl₃) with Tetramethylsilane (Me4Si) were used as an internal standard.

Fabrication of the working electrode

Vitreous glassy carbon electrode (\emptyset 15 mm x 1 mm) was polished using (1 μ m) and then (0.3 μ m) alumina slurry (Buehler). After each polishing step, the substrate was rinsed in double deionized water (DDI-H₂O) for 30 sec under ultrasonic treatment at room temperature. The catalyst ink was prepared by mixing 2 mg of each catalyst is added into 1 mL DDI-H₂O water and 0.2 mL ethanol (absolute grade, Sigma Aldrich Chemicals) and 40 uL of Nafion solution

(5 Wt.% mixture, Sigma Aldrich) under sonication in an ice bath for 5 min). The inks were deposited volumetrically onto the polished glassy carbon with a 0.5 mg/cm⁻² loading amount and then left to dry in an oven at 50 °C.

Density functional theory simulation details

The Vienna ab initio simulation package (VASP) has been used for all DFT simulations, along with the projector augmented wave pseudopotentials (PAW) using periodic boundary conditions. The Brillouin zone has been sampled with a 1×1×1 Monkhorst-pack gamma-based mesh, and Gaussian smearing of 0.02 eV was employed for the electronic levels occupation. The electron interaction energy of exchange-correlation has been described using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA). The considered conversion limit of the electronic energies has been within the limit of 10⁻⁷ eV and a 520 eV cutoff. A 0.02 eV/Å force criteria have been used for all geometries. The Van der Waals (vdW) dispersion corrections are adopted using Grimme's D3 scheme. The initial structure of Ti_3C_2 has been built from its hexagonal MAX phase Ti_3AIC_2 by removing the Al layer.¹ The resulting Ti_3C_2 structure is composed of three layers of Ti and two layers of carbon. A supercell of 441 Ti₃C₂T_x is created, where T_x is the surface terminations (x = O, F, and a mixture of O, F, and O.H.). The EDX results confirmed Ti, C, O, F, and Cu with atomic ratios of about 50.09, 31.79, 10.2, 6.7, and 1.04 %, respectively. Two-dimensional four structures are built to study the effect of the different surface functionalization on the CO₂ reduction reaction (CO_2RR) profile. Four systems have been built; a fully terminated with O, F, and a mixture of O, F, and O.H.; in the latter, we have replaced one Ti by Cu to mimic the experimental atomic ratios of the Cu-doped MXene. This mode of Cu-doping has been inspired by Pt-doping studies of $Ti_3C_2T_x$ reported by Zhao et al.². They confirmed that the Pt atoms are confined in Ti-vacancies created during the exfoliation process. The CO₂RR reaction profile on Ti₃C₂Tx has been studied using the computational hydrogen electrode approach pioneered by Nørskov et al.³

We have simulated the CO₂RR reaction using the following mechanism:

$CO_2(g) + * \rightarrow *CO_2$	Equation 2
*CO ₂ + H ⁺ + e ⁻ → *COOH	Equation 3
*СООН + Н⁺ + е⁻ → *НСООН	Equation 4
*НСООН → * + НСООН	Equation 5

The free energies of all the species at zero electrode potential have been calculated as follows: $G(U) = \Delta E + \Delta ZPE - T\Delta S$, where ΔE represents the change in enthalpy, which is considered as the DFT total energies, ΔZPE depicts the change in zero-point energy, T is the absolute temperature, and ΔS is the change in entropy. The * represents the catalyst. Therefore, at the zero-electrode potential, the free energy change of the four steps can be summarized as the following:

$\Delta G_1 = G_{*CO2} - G_* - G_{CO2(g)}$	Equation 6
$\Delta G_2 = G_{*COOH} - G_{*CO2} - 0.5 G_{H2(g)}$	Equation 7
$\Delta G_3 = G_{*HCOOH} - G_{*COOH} - 0.5 G_{H2(g)}$	Equation 8
$\Delta G_4 = G_* + G_{HCOOH} - G_{*HCOOH}$	Equation 9

Entropy and zero-point energy for H_2 (g) are taken from Nørskov et al.³. The entropy and zero-point corrections for the adsorbed species are calculated using the finite difference method as implemented in VASP, analyzed using VASPKIT.⁴

Table S1 The comparison between the preparation method, shape, and composition of our newly designed $Cu/Ti_3C_2T_x$ and previous reported MXene-based catalyst for CO_2RR .

Catalysts	Preparation method	Type of reaction	Ref.
Cu atomic doped $Ti_3C_2T_x$	$Ti_3C_2T_x$ was formed by HF etching method and then doped with Cu by simple impregnation with Cu salt at room temperature under stirring. The mass loading of Cu dopant was (1.04 Wt. %).		This work
Ti ₃ C ₂ quantum dots (QDs) impeded in 1D Cu ₂ O wires	Cu ₂ O wires obtained by anodic oxidation of Cu mesh, while Ti_3C_2 QDs formed by a hydrothermal method and passivated by polyethylenimine (PEI). Ti_3C_2 QDs were assembled over Cu ₂ O wires passivated with poly(sodium4-styrenesulfonate) followed by annealing at 200 °C for 1 h. The mass ratio of Ti_3C_2Tx was 0.2-1 mg/mL.	Photocatalytic	5
2D nanosheets $Ti_3C_2/2D$ nanosheets $Bi_2 WO_6$	Ti_3C_2 formed by H.F. etching then used as support for the growth of Bi_2 WO ₆ by the hydrothermal treatment at 120 °C for 24 h. The mass ratios of Ti_3C_2/Bi_2WO_6 were as 0.5/99.5, 1/99, 2/98, and 5/95%.	Photocatalytic	6
Commercial spherical TiO_2 P25 nanoparticles decorated 2D Ti_3C_2 -OH nanosheets	Ti_3C_2 -OH prepared by the HF etching followed by alkylation and mixing physically in water with P25 for 12 h. The mass ratios of Ti_3C_2 -OH were from 1-10 wt %.	Photocatalytic	7
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ti_3C_2 formed by HF method then annealed with TiO_2 through calcination method at 350-650 °C. The loading amount of TiO_2 was 15-99.9 %.	Photocatalytic	8

CsPbBr ₃ nanocubes distributed over 2D Ti ₃ C ₂ nanosheets	Ti_3C_2 by HCl-HF etching and was used as support for the growth of CsPbBr ₃ by a hot-injection method. The loading amount of Ti_3C_2 10, 20, 30, 50 mg.	Photocatalytic	9	
3D hierarchical structure Co-Co layered double hydroxide/Ti ₃ C ₂ T _x nanosheets	3D hierarchical structure Ti_3C_2 -OH prepared by the HF etching and used as a support for the growth of Co-Co by solvothermal method. The loading amounts of Co were 38.78-49.6.anosheetsCo were 38.78-49.6.			
2D g-C ₃ N ₄ nanosheets impeded within 2D Ti ₃ C ₂ nanosheets	Ti_3C_2 was prepared by the H.F. etching then annealed with urea for growth of 2D g-C ₃ N ₄ . The loading amounts of Ti_3C_2 were 5-15 wt %.	Photocatalytic	11	
Cube-like CeO ₂ over Ti ₃ C ₂ nanosheets	Cube-like CeO2 over Ti3C2Ti3C2 nanosheets were used as support for the growth of CeO2 cubesPnanosheetsby the hydrothermal at 180 °C for 24 h. The mass ratios of Ti3C2 were3-7 wt %.			
2D Ti ₃ C ₂ T _x nanosheets with 2D g-C ₃ N ₄ nanosheets	Ti_3C_2 -OH formed by the H.F. etching followed by alkalization then mixed in an aqueous solution for 12 h with g-C ₃ N ₄ obtained by annealing at 550 °C. The mass loadings of Ti_3C_2 -OH were 1, 5, 10, 15 wt%.	Photocatalytic	13	
2DTiO ₂ /2D C ₃ N ₄ /0D Ti ₃ C ₂	2D mesoporous TiO_2 nanosheets synthesized via hydrothermal induced solvent-confined monomicelle self-assembly were used as a support for the growth of 2D C_3N_4 nanosheets by annealing of urea, then TiO_2/C_3N_4 was mixed via electrostatic interactions with OD Ti_3C_2 QDs that obtained by HF etching and hydrothermal treatment at 100 °C for 6 h.	Photocatalytic	14	
$2Dg-C_3N_4/2D$ bentonite/2D Ti ₃ C ₂ T _x	2D g-C ₃ N ₄ nanosheets formed by hydrothermal method and 2D $Ti_3C_2T_x$ nanosheets by H.F. etching, and both were mixed with bentonite by stirring for 6vh and sonication for 1 h.	Photo- catalytic	15	
ZnO-Fe-Ti ₃ C ₂ T _x	ZnO prepared by hydrothermal at 453 K for 12 h then calcination in at 673 K for 2 h and ZnO-Fe by the hydrothermal and calcination at 673 K for 2 h then mixed with HF obtained $Ti_3C_2T_x$ by hydrothermal at 453 K for 12 then calcination at 673 K for 2 h. The mass ratio of ZnO-Fe was 32.27 wt %.	Electro-catalytic	16	
2D MoC ₂ T _x nanosheets 2D Ti ₂ CT _x nanosheets	${\sf Ti}_2{\sf CT}_x$ formed by HF etching or KF-HCl, while ${\sf MoC}_2{\sf T}_x$ Formed by HF etching.	Electro-catalytic	17	
Metal (Pd, Pt, and Au) N.P.s/ 2D g-C ₃ N ₄ nanosheets/2D Ti ₃ C ₂ nanosheets	Ti ₂ CT _x formed by HF etching and was annealed at 500 °C for 2 h with thiourea to be decorated with gC_3N_4 . The mass contents of Ti ₃ C ₂ /g-C ₃ N ₄ were 50/1 (denoted as TCCN ₁), 20/1 (denoted as TCCN ₁) and 10 /1 (denoted as TCCN ₃). Then metal (Pd, Pt, and Au) N.P.s were deposited by electrodeposition over2D	Photo-Electro- catalytic	18	

	g C ₃ N ₄ /decorated 2D Ti ₃ C ₂ .		
Co ₃ O ₄ nanorods anchored $Ti_3C_2T_x$ -NH ₃ formed by HF and annealing under NH ₃ at 600 °C, then		Thermal CO ₂	19
on 2D $Ti_3C_2T_x$ -NH ₃	was used as support for the growth of Co_3O_4 by chemical	hydrogenation	
nanosheets	impregnation and annealing at 350 °C for 2 h. The mass loading of		
	Co was 9.8 wt %.		
Pd/N-TiO ₂ /Ti ₃ C ₂ T _x /FTO	N-TiO ₂ /Ti ₃ C ₂ T _x was prepared by the H.F. etching followed by	Artificial	20
	hydrothermal oxidation and salinization under refluxing for 6 h to	photosynthesis	
	and then deposited over FTO to form N-TiO ₂ /Ti ₃ C ₂ T _x /TFO. Pd was		
	deposited over N-TiO ₂ /Ti ₃ C ₂ T _x /TFO by pulse electrodeposition		
	technique. The loading amount of Pd is 0.83 wt %.		

Figure S1 SEM image of Ti₃AlC₂

Figure S2 XRD of Cu/Ti $_3C_2T_x$ and Ti $_3C_2T_x$.

Figure S3 Powder X-ray diffraction retrieve of $Ti_3C_2T_x$ as a function of Tx (Tx= F, O, and OH).

Figure S4 Nitrogen adsorption/desorption isotherms of $Cu/Ti_3C_2T_x$ and $Ti_3C_2T_x$.

Figure S5 (a) LSV measured in a CO₂-saturated 0.1 M NaHCO₃ solution at room temperature on Cu₀/Ti₃C₂T_x, Cu_{0.5}/Ti₃C₂T_x, Cu/Ti₃C₂T_x, and Cu₂/Ti₃C₂T_x. (b) The constant potential electrolysis (CPE) tests measured in a CO₂-saturated 0.1 M NaHCO₃ solution at room temperature at -1.5 V and (c) the calculated j/j_0 percent after 200 min for Cu/Ti₃C₂T_x relative to Ti₃C₂T_x.

Table S2. The CO_2RR performance and their related conditions over MXenes reported elsewhere compared withour newly developed Cu/Ti₃C₂T_x MXene. * Refers to the Faradic efficiency.

Catalyst	Photocurrent density/Current density	Type of reaction/Conditions	Product	Faradic efficiency, Yield/Rate	Ref.
Cu/ Ti ₃ C ₂ T _x	-1.08 mA cm ⁻² at - 1.5 V _{Ag/AgCl}	Electro- catalytic 25 °C Electrolyte 0.1 M NaHCO ₃	НСООН -СН₃ОН	*58.1%	This work
 Ti₃C₂ sheets/ Cu₂O NWs/Cu Ti₃C₂ QDs/ Cu₂O NWs/Cu 	- 4.29 mA cm ⁻² at 0 V _{RHE} - 5.84 mA cm ⁻² at 0V _{RHE}	Photo-catalytic AM 1.5, 300 W Xe lamp Electrolyte Na2SO4 (0.5 m, pH = 5.8 with potassium phosphate 0.1 m)	-CH₃OH	 - 153.38 ppm cm⁻² after 6 hours - 70.25 ppm cm⁻² after 6 h 	5
Ti ₃ C ₂ /Bi ₂ WO ₆	- 3.25 μA cm ⁻² at 0V _{RHE}	Photo-catalytic 300 W Xe lamp Electrolyte 0.5 mol/L potassium sulfate solution (pH = 7)	- CH ₃ OH -CH ₄	- 2.64 μmol g ⁻¹ after 6 h - 10.68 μmol g ⁻¹ after 6 h	6
$Ti_{3}C_{2}$ -OH/Commercial TiO ₂	- 8.0 μA cm ⁻² at 0V _{Ag/AgCl}	Photo- catalytic 300 W Xe lamp Electrolyte 0.5 M 0.5 M Na2SO4	- C.O. - CH ₄	 - 70.44 μmol g⁻¹ after 6 h - 99.66 μmol g⁻¹ after 6 h 	7
Ti ₃ C ₂ /TiO ₂	- 6.0 μA cm ⁻² at 1.2 V _{Ag/AgCl}	Photo- catalytic 300 W Xe lamp Electrolyte 0.5 M Na2SO4	- CH ₄	- 26.4 μmol g ⁻¹ after 6 h	8
CsPbBr ₃ /MXene	0.05 nA	Photo-catalytic 300 W Xe lamp (>420 nm) Electrolyte Ethyl acetate	- C.O. - CH ₄	- 24.75 μmol g ⁻¹ after 6 h - 11.44 μmol g ⁻¹ after 6 h	9
Co-Co LDH/Ti ₃ C ₂ T _x	- N/a	Photocatalytic 5 W LED lamp (400-1000 nm) Acetonitrile/H2O/triethanola mine	- CO	12.5 mmol h ⁻¹ g ⁻¹	10
Ti ₃ C ₂ /g-C ₃ N ₄	- N/a	Photo- catalytic 300 W Xenon lamp (λ ≥ 420 nm)	- C.O. - CH ₄	- 5.19 μmol h ⁻¹ g ⁻¹ - 0.044 μmol h ⁻¹ g ⁻¹	11

		Electrolyte g NaHCO ₃ (1.26)			
		powders+ 2M H ₂ SO ₄			
CeO ₂ /Ti ₃ C ₂	4.11 μA cm ⁻² at -	Photo- catalytic	- CO	39.67 μmol m ⁻² h ⁻¹	12
	0.57 V _{Ag/AgCl}	350 W Xe lamp.			
		Electrolyte NaHCO3 (0.084			
		g)+2M HCl			
$Ti_3C_2T_x/g-C_3N_4$	1.99 nA cm ⁻²	Photo- catalytic	- C.O.	- 11.21 μmol g ⁻¹	13
		50 W Xenon lamp	- CH ₄	- 0.203 µmol g ⁻¹	
		Electrolyte 0.2 M Na2SO4			
2D/2D/0D	-0.42 µA cm ⁻² at -	Photo- catalytic	- C.O.	- 4.39 μmol h ⁻¹ g ⁻¹	14
TiO ₂ /C ₃ N ₄ /Ti ₃ C ₂	0.2 V	Xenon lamp	- CH ₄	- 1.20 µmol h ⁻¹ g ⁻¹	
		Electrolyte NaHCO ₃ (0.084) +			
		2M H ₂ SO ₄			
2D/2D/2D O-	- N/a	Photo- catalytic	- CO	- 326 μmol h ⁻¹ g ⁻¹	15
C ₃ N ₄ /Bt/Ti ₃ C ₂ T _x			- CH4	- 230 µmol h ⁻¹ g ⁻¹	
ZnO-Fe-Ti ₃ C ₂ T _x	18 mA/cm ² at -1	Electro-catalytic	NA	- N/A	16
	V _{Ag/AgCl}	35 W HID lamp			
		Electrolyte			
		0.5 NaOH			
2D MoC ₂ T _x	-1.1 mA cm ⁻² at -	Electro- catalytic	- НСООН	*38 %	17
	1.5 V _{SHE}	Electrolyte	- CO	*1.1%	
	SIL	, acetonitrile, water,			
	-2.5 mA cm ⁻² at -	and 3-butyl-1-methyl-1H-			
2D Ti₂CT₂ (KF-HCL	1.55 V _{SHE}	imidazol-3-iumtetra-			
etchant)	2100 130	fluoroborate (BMIMBE4)	-нсоон	*20.7%	
			neoon	20.770	
2D Ti ₂ CT ₂ (H.F.	–0.51 mA cm ⁻² at		-нсоон	*56.1 %	
etchant)	-1.5 Vsus				
	210 586				
Pd/TCCN ₃	-1.2 mA at 1.4V	Photo-Electro –catalytic	HCOO-	37 μmol h ⁻¹ cm ⁻²	18
	-1.5 V vs. Ag/AgCl	300 W xenon lamp	CH₃OH	14 μmol h ⁻¹ cm ⁻²	
		Electrolyte 0.1 M KHCO3	Hydrocarb	50.2 µmol h ⁻¹ cm ⁻²	
Pt/TCCN ₃	1.25 mA	aqueous	on		
Au/TCCN ₃	1.16 mA				
TCCN3	1.1 mA				
Co ₃ O ₄ nanorods/2D	-0.75 mA cm ⁻²	Thermal catalytic	нссон	53368 µmol h ⁻¹ g ⁻¹	19
Ti ₂ C ₂ T ₂ -NH ₂	-0.29 V vs. SHF				
nanosheets					

Pd/N-TiO ₂ /Ti ₃ C ₂ T _x /FTO	-10 mA cm ⁻²	Photo-Electro –catalytic	НСООН	45 μmol h ⁻¹ cm ⁻²	20
	-1.4 V vs. SCE	300 W Xe lamp (200	CH₃OH,	28 µmol h ⁻¹ cm ⁻²	
		mW/cm²)	CH₃CH₂OH	5 µmol h ⁻¹ cm ⁻²	
		Electrolyte 0.1M KHCO₃			

Figure S6 (a) SEM image, (b) TEM image, (c) EDX analysis, and (d) XPS survey of $Cu/Ti_3C_2T_x$ after CPE durability test. The table in (b) shows the estimated composition before and after stability tests determined using the EDX.

Figure S7 (a) E_{Fradic} of minor CO₂RR products obtained on Cu/Ti₃C₂T_x and Ti₃C₂T_x at -1.5V.The gas products were analyzed using gas chromatography (GC) (Wasson-ECE Instrumentation, Colorado USA) using the same protocol in Ref.²¹ (b) CPE testes measured on Cu/Ti₃C₂T_x under differ poetical and its related $E_{Fradaic}$ of HCOOH and CH₃OH at various potential.

Figure S8 Top and side view of *CO₂ (a,b),*COOH (c,d), *HCOOH (e,f) intermediates optimized on Ti₃C₂T_x (T_x=F)

Figure S9 Top and side view of $*CO_2$ (a,b), *COOH (c,d), *HCOOH (e,f) intermediates optimized on $Ti_3C_2T_x$ ($T_x=O$)

Figure S10 Top and side view of $*CO_2$ (a,b),*COOH (c,d), *HCOOH (e,f) intermediates optimized on $Ti_3C_2T_x$ (T_x =F, O, and OH)

Figure S11 Top and side view of $CO_2(a,b)$, COOH (c,d), HCOOH (e,f) intermediates optimized on Cu/Ti₃C₂T_x (T_x=F, O, and OH)

Figure S11 Top (a) and side view (b) of *COOH intermediate optimized on $Cu/Ti_3C_2T_x$ ($T_x=F$, O, and OH)

References

- 1. N. V. Tzenov and M. W. Barsoum, *Journal of the American Ceramic Society*, 2000, **83**, 825-832.
- 2. D. Zhao, Z. Chen, W. Yang, S. Liu, X. Zhang, Y. Yu, W.-C. Cheong, L. Zheng, F. Ren and G. Ying, *Journal of the American Chemical Society*, 2019, **141**, 4086-4093.
- 3. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *The Journal of Physical Chemistry B*, 2004, **108**, 17886-17892.
- 4. V. Wang, N. Xu, J.-C. Liu, G. Tang and W.-T. Geng, *Computer Physics Communications*, 2021, 108033.
- 5. Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian and P. Chen, *Advanced Functional Materials*, 2019, **29**, 1806500.
- 6. S. Cao, B. Shen, T. Tong, J. Fu and J. Yu, *Advanced Functional Materials*, 2018, **28**, 1800136.
- 7. M. Ye, X. Wang, E. Liu, J. Ye and D. Wang, *ChemSusChem*, 2018, **11**, 1606-1611.
- 8. J. Low, L. Zhang, T. Tong, B. Shen and J. Yu, *Journal of Catalysis*, 2018, **361**, 255-266.
- 9. A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He and Y. Liu, *The journal of physical chemistry letters*, 2019, **10**, 6590-6597.

- 10. W. Chen, B. Han, Y. Xie, S. Liang, H. Deng and Z. Lin, *Chemical Engineering Journal*, 2020, **391**, 123519.
- 11. C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun and K. Lv, *Applied Catalysis B: Environmental*, 2020, **268**, 118738.
- 12. J. Shen, J. Shen, W. Zhang, X. Yu, H. Tang, M. Zhang and Q. Liu, *Ceramics International*, 2019, **45**, 24146-24153.
- 13. Q. Tang, Z. Sun, S. Deng, H. Wang and Z. Wu, *Journal of Colloid and Interface Science*, 2020, **564**, 406-417.
- 14. F. He, B. Zhu, B. Cheng, J. Yu, W. Ho and W. Macyk, *Applied Catalysis B: Environmental*, 2020, **272**, 119006.
- 15. M. Tahir and B. Tahir, *Chemical Engineering Journal*, 2020, **400**, 125868.
- 16. K. Kannan, M. H. Sliem, A. M. Abdullah, K. K. Sadasivuni and B. Kumar, *Catalysts*, 2020, **10**, 549.
- 17. A. D. Handoko, H. Chen, Y. Lum, Q. Zhang, B. Anasori and Z. W. Seh, *Iscience*, 2020, 23, 101181.
- 18. Y. Xu, S. Wang, J. Yang, B. Han, R. Nie, J. Wang, Y. Dong, X. Yu, J. Wang and H. Jing, *Journal of Materials Chemistry A*, 2018, **6**, 15213-15220.
- 19. J. Ma, Q. Jiang, Y. Zhou, W. Chu, S. Perathoner, C. Jiang, K. H. Wu, G. Centi and Y. Liu, *Small*, 2021, 2007509.
- 20. Y. Xu, S. Wang, J. Yang, B. Han, R. Nie, J. Wang, J. Wang and H. Jing, *Nano Energy*, 2018, **51**, 442-450.
- 21. A. D. Handoko, H. Chen, Y. Lum, Q. Zhang, B. Anasori and Z. W. Seh, *Iscience*, 2020, 101181.