Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Pyridine-grafted nitrogen-doped carbon nanotubes achieving efficient electroreduction of CO_2 to CO within a wide electrochemical window

Yuning Zhang, ‡^a Hao Jiang, ‡^b Dongfang Niu, *^a Ingo Manke,^c Chao Yang, *^c Minghui Zhu,^a Xinsheng Zhang, *^a and Renjie Chen^d

^a State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail: dfniu@ecust.edu.cn; xszhang@ecust.eud.cn

^b Petroleum Processing Research Center, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

^c Helmholtz Centre Berlin for Materials and Energy, Hahn-Meitner-Platz 1, Berlin 14109, Germany. E-mail: chao.yang@helmholtz-berlin.de

^d Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

‡ These authors contributed equally to this work.

Fig. S1. Pictures of (a) H-type cell and (b) flow cell with an observable gas diffusion electrode.

Fig. S2. TEM images of (a) N₄CNTs-800 and (b) Py-N₄CNTs-800.

Fig.S3. (a) Partial current densities and (b) faradaic efficiencies of H_2 on N_4 CNTs-800 and Py- N_4 CNTs-800 at different potentials.

Fig.S4. (a) N 1s XPS spectra of Py-N₄CNTs-800 before and after the stability test. (b) N 1s XPS spectra of N₄CNTs-800 before and after stability test.

Fig. S5. (a) Faradaic efficiencies of CO on OCNTs and Py-OCNTs at different potentials. (b) Partial current densities of CO on Py-OCNTs, N₄CNTs-800 and Py-N₄CNTs-800 at different potentials.

Fig. S6. (a) N 1s XPS spectra of N₅CNTs-700, (b) N₅CNTs-800 (c)N₅CNTs-900 and (d) N₃CNTs-800. (e)Faradaic efficiencies of CO, (f) partial current densities of CO, (g) faradaic efficiencies of H₂ and (h) partial current densities of H₂ on N₄CNTs-800, N₅CNTs-700, N₅CNTs-800, N₅CNTs-900 and N₃CNTs-800 at different potentials.

Fig. S7. (a) N 1s XPS spectrum of QPy-N₄CNTs-800. (b) FT-IR spectra Py-N₄CNTs-800 and QPy-N₄CNTs-800. (c) CO_2 adsorption isotherms of N₄CNTs-800, Py-N4CNTs-800 and QPy-N₄CNTs-800.

Fig. S8. (a) Partial current densities of CO, (b) partial current densities of H_2 and (c) faradaic efficiencies of H_2 on Py-N₄CNTs-800 and QPy-N₄CNTs-800 at different potentials.

Samples	N 1s	Pyridine N	Pyrrole N	Graphite N	NOx	Quaternary N	
	(at.%)	(at.%)	(at.%)	(at.%)	(at.%)	(at.%)	
N ₄ CNTs-800	4.37	2.04	1.29	0.87	0.17	/	
N ₃ CNTs-800	3.26	1.46	0.81	0.52	0.46	/	
N₅CNTs-700	4.26	1.88	0.80	1.26	0.33	/	
N₅CNTs-800	4.45	2.02	1.05	0.99	0.38	/	
N₅CNTs-900	3.98	1.75	0.73	1.25	0.25	/	
Py-N ₄ CNTs-800	5.38	2.85	1.15	1.03	0.34	/	
QPy-N₄CNTs-800	5.35	1.84	1.44	1.02	0.20	0.86	

Table S1. The types and content of nitrogen in the prepared catalysts from XPS spectra.

Complex		Potential	FE _{co}	j co	Stability	FE _{co} >90	Def
Samples	Electrolyte	(V vs. RHE)	(%)	(mA cm ⁻²)	(h)	(V vs. RHE)	Ref.
Py-N ₄ CNTs-800	0.1 M KHCO ₃	-0.99	96%	18.4	19.3	-0.79 ~ -1.19	This
NSHCF900	0.1 M KHCO ₃	-0.7	94%	~96	36	-0.7	7
N-GRW	0.5 M KHCO ₃	-0.40	87.6%	~3.08	10	/	16
CNPC-1100	0.1 M KHCO ₃	-0.6	92%	~0.8	8	-0.6	17
1D/2D NR/CS-900	0.5 M KHCO ₃	-0.45	94.2%	~1	30	-0.45 ~ -0.55	24
NCNT-NH ₃	0.5 M NaHCO ₃	-0.8	94.5%	~14	40	-0.6 ~ -0.9	26
NF-C-950	0.1 M KHCO ₃	-0.6	90%	1.9	40	-0.6	29
NCNT-3-700	0.5 M NaHCO ₃	-0.9	90%	5	60	-0.9	30
NPC-900	0.5 M KHCO ₃	-0.67	95%	2.3	10	-0.67	31
DG	0.1 M KHCO ₃	-0.6	84%	1.3	10	/	32
NDAPC	0.1 M KHCO ₃	-0.9	83%	~3.8	8	/	33
DPC-NH ₃ -950	0.1 M KHCO ₃	-0.6	95.2%	2.71	24	-0.5 ~ -0.7	34
NS-CNSs	0.5 M KHCO ₃	-0.55	85.4%	2.4	20	/	35
WNCNs	0.1 M KHCO ₃	-0.6	84%	1.15	8	/	36
NS-C-900	0.1 M KHCO ₃	-0.6	92%	2.63	20	-0.6	37
NG-800	0.1 M KHCO ₃	-0.58	85%	~1.53	5	/	55
SZ-HCN	0.1 M KHCO ₃	-0.6	93%	~4.65	20	-0.6	56
NRMC-900	0.1 M KHCO ₃	-0.6	80%	2.9	10	/	57
D-C-1100	0.1 M KHCO ₃	-0.6	94.5%	~0.9	10	-0.6 ~ -0.7	58
CN-H-CNTs	0.1 M KHCO ₃	-0.5	88%	~0.4	7	/	59
Ag/CNT COOH	0.1 M KHCO ₃	-1.1	83%	~17	10	/	60
AgNPs@PAM	0.1 M KHCO ₃	-0.89	97.2%	~22	48	-0.79 ~ -1.09	61
Au/Py-CNTs-O	0.1 M KHCO ₃	-0.59	93%	~7	10	-0.58 ~ -0.98	62
H-Zn-NPs	0.1 M KHCO ₃	-0.96	94.2%	~5	12	-0.76 ~ -1.06	63

Table S2. Summary of electrocatalysts studied for $\rm CO_2ER$ to CO.