Electronic Supplementary Information (ESI[†])

Inducing Atomically Dispersed Cl-FeN₄ Sites for ORR in the SiO₂-Mediated Synthesis of Highly Mesoporous N-enriched C-networks

Xiong Zhang,^a Lai Truong-Phuoc,^a Xuemei Liao,^{a,b,*} Vasiliki Papaefthimiou,^a Matteo Pugliesi,^c Giulia Tuci,^c Giuliano Giambastiani,^{a,c,*} Sergey Pronkin,^{a,*} Cuong Pham-Huu^{a,*}

- ^a Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France. giambastiani@unistra.fr, sergey.pronkin@unistra.fr, cuong.pham-huu@unistra.fr
- ^b School of Food and Biological Engineering, Xihua University, 610039, Chengdu, China. <u>xmliao@mail.xhu.edu.cn</u>
- ^c Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, Via Madonna del Piano, 10 – 50019, Sesto F.no, Florence, Italy. <u>giuliano.giambastiani@iccom.cnr.it</u>

Contents

Fig. S1 [†] . Raman spectra of samples 1-3 along with their relative fitting	S2
Fig. S2 [†] . XPS survey spectra of 1-3	S2
Fig. S3 [†] . A-B) SEM and C-D) TEM images of 1 at different magnifications	S3
Fig. S4 [†] . HAADF-STEM of 1 along with corresponding EDX elemental mapping	S3
Fig. S5 [†] . SEM images of 2 (A,B) and 3 (C,D) at different magnifications	S4
Fig. S6 [†] . Normalized XANES spectra at the Fe K-edge of 1 and EXAFS fitting curve of 1	S4
Table S1 ⁺ : Structural data from the fitting of Fe K-edge EXAFS signal in Fe ^{Zn} /CNP (1)	S5
Fig. S7 [†] . Cyclic voltammograms of samples 1-3 under N ₂ - and O ₂ -saturated solutions	S5
Table S2 [†] . Number of exchanged electrons (n_E) for RDE and RRDE measurements at different catalyst loadings	S 6
Table S3 [†] .Selection of representative Fe-SACs of the state-of-the-art andtheir ORR performance under alkaline environment	S 6
Fig. S8 [†] . Linear sweep voltammograms (LSVs) and K-L plots for ORR in O ₂ -saturated 0.1 M KOH solution for 1-3	S 7
References	S8

Fig. S1[†]. Raman spectra of samples 1-3 along with their relative Lorentzian peaks fitting (dashed lines). I_D/I_G values are reported in Table 1.

Fig. S2[†]. XPS survey spectra of $Fe^{Zn}/CNP(1)$, and Fe/CNP(2) and $Fe^{Zn}/CNP(3)$. All spectra contain the Auger line of Na KLL caused by the material treatment with a NaOH solution for the silica template removal.¹

Fig. S3[†]. A-B) SEM and C-D) TEM images of 1 at different magnifications

Fig. S4[†]. A) HAADF-STEM image of **1** along with corresponding EDX elemental mapping (Aa-Ad) Color codes: C (red), N (yellow), O (light blue) and Fe (pink).

Fig. S5[†]. SEM images of 2 (A,B) and 3 (C,D) at different magnifications.

Fig. S6[†]. A) Normalized XANES spectra at the Fe K-edge of **1**, metallic Fe foil, FeO and Fe₂O₃ along with a magnification of the pre-edge transition peaks. Expansion on the right-side hand also include the pre-edge peak of a Fe-phthalocyanine (FePc) as a FeN₄ structure in a typical square-planar configuration with high D_{4h} symmetry. B) EXAFS fitting curve of **1** in R space with all components. No phase-shift correction was applied to the Fourier transforms.

Path	Coord. Numb.	$R(Å)^a$	$\sigma^2 (10^{-2} \text{ Å}^2)^b$	$\Delta E_0^{\ c}$	R-factor ^d
Fe-N	3.4 ± 0.2	1.97 ± 0.01	2.9 ± 0.9	-2.8 ± 0.4	0.009
Fe-Cl	1.0 ± 0.1	2.32 ± 0.01	2.7 ± 1.2	4.6 ± 0.9	-
Fe-C	4.8 ± 0.6	2.90 ± 0.01	3.8 ± 1.9	-2.8 ± 0.4	-

Table S1⁺. Structural data from the fitting of Fe K-edge EXAFS signal in Fe^{Zn}/CNP (1).

^a Interatomic distance. ^b Debye-Waller factor. ^c Difference in the threshold Fermi level between data and fit.

 d Goodness of fit parameters.

Fig. S7[†]. Cyclic voltammograms of samples **1-3** recorded under N₂saturated (green lines) and O₂-saturated solutions (red lines). The potential was linearly swept from 0.0 to 1.2 V at a scan rate of 50 mV s^{-1} vs. RHE as reference electrode in a water 0.1 M KOH electrolyte solution.

Table S2[†]. Number of exchanged electrons (n_E) for RRDE measurements carried out at different catalyst loadings (188, 377 and 755 µg cm⁻²).

Catalyst loading (µL of ink)	8	16	32
Catalyst loading (µg cm ⁻²)	188	377	755
Catalyst loading $(\mu g)^a$	37	74	148
Exchange electrons (<i>n</i>)	3.22	3.75	3.57
Exchange electrons (n)	3.22	3.75	3.

^a 0.19625 cm² GC rotating-disk electrode

Table S3[†]. Selection of the most representative Fe-SACs of the *state-of-the-art* reported in the literature so far and their ORR performance under alkaline environment.

Entry	Catalyst	Fe content (wt.%) ^a	Mass loading (mg cm ⁻²)	$E_{on}(V)^b$	$E_{1/2}(V)^{b}$	$J_{\rm L}$ (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	Ref.
1	Fe ^{Zn} /CNP (1)	0.40	0.38	0.97	0.88	6.35	39.5	this work
2	Fe-N-HMCTs		0.20	0.99	0.87	5.66	89	2
3	Fe-N _x -C-1		0.68	0.93	0.85	6.5	74	3
4	ICM-FePhen ₃		0.80	0.91°	0.86	5.8 °		4
5	FN-800		0.70	0.93	0.82	5.4 °		5
6	m-Fe/N/C-900		0.6		0.84	5.8		6
7	Fe-NC-S	1.93	0.2	0.96	0.88	5.7	49	7
8	Fe/NSCN	2.54	0.75	1.09	0.88	5.08	92	8
9	FeNC-900		0.7	0.98 °	0.85	5.6		9
10	FeBNC-800	0.40	0.6	0.97	0.84	5.51	69	10
11	Fe@Aza-PON		0.28	0.9 °	0.84	6 °	60	11
12	Fe-ISA/SNC	0.947	0.51	0.96	0.90	5.7 °	44	12
13	Fe-SAs/NPS-HC	1.54	0.5	0.96 °	0.91	6 °	36	13
14	Fe-SilkPNC	0.12	0.6	0.95	0.85	5 °	61.4	14
15	Fe/N/S-PCNT		0.1	0.96	0.84	5 °		15
16	Fe-NMP		0.6	0.97	0.84	4.8 °		16
17	SAFe-NDC-H	1.15	0.4	0.92 °	0.86	5 °	61	17
18	3DOM FeNC-900	1.59	0.6	0.96 °	0.88	6 °	49	18
19	C-FeZIF-1.44-950		0.5	0.95 °	0.86	6.4 °		19
20	Fe-NSDC		0.1	0.96	0.84	5.5 °	56	20
21	Fe ₃ C/Fe@G-800	52.8	0.6	0.94	0.80	4.8 °		21
22	Fe-N-C/rGO		0.35	0.94	0.81	6 ^c	98.8	22
23	SA-Fe-HPC		0.1	0.96 °	0.89	5.4	49	23
24	Fe-N-C/MXene		0.1	0.92	0.84	6 ^c		24
25	Fe@N-C NT/NSs		0.25	1.00	0.82	7.5 °	69.6	25
26	Fe-SAs/NSC	0.87	0.2	1	0.87	6 °	60	26
27	C-FeHZ8@g-C ₃ N ₄ -950		0.5	0.92 ^c	0.85	5.5 °		27
28	Fe-N/P-C-700		0.6	0.94	0.87	5.66		28
29	SC-Fe		0.25	0.96 °	0.87	5.8 °	51.3	29
30	meso-Fe-N-C	2.9	0.4	0.92 °	0.85	5.2 °		30

31	Fe-N/C-155	5.86	0.245	1.09	0.85	6.5		31
32	Fe(0)@FeNC	0.5	0.3	0.95	0.85	6.4	72	32
33	Fe-LC-900	4.13	-	0.96	0.82	5 °	74	33
34	Fe-N-CPNS		0.2	0.92 °	0.84	5.8		34
35	Fe-CNSs-N		0.31	0.95	0.84	5.2 °	70.6	35
36	Fe-N-3DPC-1000	0.87	0.2	0.96 °	0.85	4.8 °	79	36
37	Fe/OES	0.11	0.4	1.00	0.85	6.1 °		37
38	1/CNT		0.08	0.93	0.84	5 °	84	38
39	3D-FePDC		-	0.98	0.84	5.5 °	81	39
40	Fe ₃ C-FeN/NC-2	0.44	0.4	0.95	0.8	5.1	55	40
41	FeS/Fe3C@NS-C-900		0.1156	1.03	0.78	6.83	94	41
42	Fe1-HNC-500-850	0.31	0.2	0.93 °	0.84	5.80	51.5	42
43	Fe3-NG		0.5	1.03	0.84	7.0 °		43
44	Fe-N-CC	0.7	0.1	0.94	0.83	4.4 °		44
45	S-Fe/N/C		0.16	0.91	0.84	5.1 °		45

Electronic Supplementary Information (ESI⁺)

^{*a*} as measured from ICP analyses ^{*b*} potential values reported *vs*. RHE ^{*c*} as extrapolated from figures in the corresponding manuscript.

Fig. S8[†]. (A-C) Linear sweep voltammograms (LSVs) and (D-F) K-L plots for ORR in O₂-saturated 0.1 M KOH solution promoted by Fe^{Zn}/CNP (1), Fe/CNP (2) and Fe^{Zn}/CN (3) at variable spin rates (600, 900, 1200, 1600, 2000 and 2500 rpm). Scan rates: 10 mV s⁻¹, catalyst loading 377 μ g cm⁻² for each catalyst at work.

References:

- R. Ma, G. Lin, Q. Ju, W. Tang, G. Chen, Z. Chen, Q. Liu, M. Yang, Y. Lu and J. Wang, 1. Appl. Catal. B-Environ., 2020, 265, 118593.
- 2. X. Cui, L. Gao, S. Lei, S. Liang, J. Zhang, C. D. Sewell, W. Xue, Q. Liu, Z. Lin and Y. Yang, Adv. Funct. Mater., 2021, 31, 2009197
- 3. Y. Liu, B. Huang, X. Zhang, X. Huang and Z. Xie, Journal of Power Sources, 2019, 412, 125-133.
- 4. J. Li, Q. Jia, S. Mukerjee, M.-T. Sougrati, G. Drazic, A. Zitolo and F. Jaouen, Catalysts, 2019, 9, 144.
- 5. X. Yan, Y. Yao and Y. Chen, Nanoscale research letters, 2018, 13, 1-7.
- 6. C. Guo, Y. Li, Z. Li, Y. Liu, Y. Si and Z. Luo, Nanoscale research letters, 2020, 15, 1-14.
- 7. X. Li, C.-S. Cao, S.-F. Hung, Y.-R. Lu, W. Cai, A. I. Rykov, S. Miao, S. Xi, H. Yang and Z. Hu, Chem, 2020, 6, 3440-3454.
- 8. X. Zhang, L. Truong-Phuoc, X. Liao, G. Tuci, E. Fonda, V. Papaefthymiou, S. Zafeiratos, G. Giambastiani, S. Pronkin and C. Pham-Huu, ACS Catal., 2021, 11, 8915-8928.
- 9. W.-J. Jiang, W.-L. Hu, Q.-H. Zhang, T.-T. Zhao, H. Luo, X. Zhang, L. Gu, J.-S. Hu and L.-J. Wan, Chem Commun, 2018, 54, 1307-1310.
- 10. K. Yuan, S. Sfaelou, M. Qiu, D. Lützenkirchen-Hecht, X. Zhuang, Y. Chen, C. Yuan, X. Feng and U. Scherf, ACS Energy Letters, 2017, 3, 252-260.
- 11. S.-J. Kim, J. Mahmood, C. Kim, G.-F. Han, S.-W. Kim, S.-M. Jung, G. Zhu, J. J. De Yoreo, G. Kim and J.-B. Baek, Journal of the American Chemical Society, 2018, 140,

1737-1742.

- 12. Q. Li, W. Chen, H. Xiao, Y. Gong, Z. Li, L. Zheng, X. Zheng, W. Yan, W. C. Cheong and R. Shen, *Advanced materials*, 2018, **30**, 1800588.
- 13. Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong, W.-C. Cheong, R. Shen, X. Wen, L. Zheng and A. I. Rykov, *Nature communications*, 2018, **9**, 1-12.
- 14. C. Wang, W. Chen, K. Xia, N. Xie, H. Wang and Y. Zhang, *Small*, 2019, 15, 1804966.
- Z. Tan, H. Li, Q. Feng, L. Jiang, H. Pan, Z. Huang, Q. Zhou, H. Zhou, S. Ma and Y. Kuang, *Journal of materials chemistry A*, 2019, 7, 1607-1615.
- M. M. Hossen, K. Artyushkova, P. Atanassov and A. Serov, *Journal of Power Sources*, 2018, **375**, 214-221.
- W. Ni, Y. Gao, Y. Zhang, H. A. Younus, X. Guo, C. Ma, Y. Zhang, J. Duan, J. Zhang and
 S. Zhang, ACS applied materials & interfaces, 2019, 11, 45825-45831.
- X. Zhang, X. Han, Z. Jiang, J. Xu, L. Chen, Y. Xue, A. Nie, Z. Xie, Q. Kuang and L. Zheng, *Nano Energy*, 2020, **71**, 104547.
- Y. Deng, B. Chi, J. Li, G. Wang, L. Zheng, X. Shi, Z. Cui, L. Du, S. Liao and K. Zang, Advanced Energy Materials, 2019, 9, 1802856.
- J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu, H. Zhou, C. Sun, Y. Yu, C. Zhu and Z. Zhu, *Small*, 2019, 15, 1900307.
- 21. A. Song, L. Cao, W. Yang, Y. Li, X. Qin and G. Shao, ACS Sustainable Chemistry & Engineering, 2018, 6, 4890-4898.
- 22. C. Zhang, J. Liu, Y. Ye, Z. Aslam, R. Brydson and C. Liang, *ACS applied materials & interfaces*, 2018, **10**, 2423-2429.

- 23. Z. Zhang, J. Sun, F. Wang and L. Dai, *Angewandte Chemie*, 2018, **130**, 9176-9181.
- 24. L. Jiang, J. Duan, J. Zhu, S. Chen and M. Antonietti, ACS nano, 2020, 14, 2436-2444.
- X. Li, L. Ni, J. Zhou, L. Xu, C. Lu, G. Yang, W. Ding and W. Hou, *Nanoscale*, 2020, 12, 13987-13995.
- J. Zhang, Y. Zhao, C. Chen, Y.-C. Huang, C.-L. Dong, C.-J. Chen, R.-S. Liu, C. Wang,
 K. Yan and Y. Li, *Journal of the American Chemical Society*, 2019, 141, 20118-20126.
- 27. Y. Deng, B. Chi, X. Tian, Z. Cui, E. Liu, Q. Jia, W. Fan, G. Wang, D. Dang and M. Li, Journal of Materials Chemistry A, 2019, 7, 5020-5030.
- K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang,
 M. K. Leung and Y. Chen, *Journal of the American Chemical Society*, 2020, 142, 2404-2412.
- 29. J. Xie, B. Q. Li, H. J. Peng, Y. W. Song, J. X. Li, Z. W. Zhang and Q. Zhang, *Angewandte Chemie International Edition*, 2019, **58**, 4963-4967.
- Y. Zhou, Y. Yu, D. Ma, A. C. Foucher, L. Xiong, J. Zhang, E. A. Stach, Q. Yue and Y. Kang, ACS Catalysis, 2020, 11, 74-81.
- G. Ye, Q. He, S. Liu, K. Zhao, Y. Su, W. Zhu, R. Huang and Z. He, *Journal of Materials Chemistry A*, 2019, 7, 16508-16515.
- 32. Z. Li, L. Wei, W.-J. Jiang, Z. Hu, H. Luo, W. Zhao, T. Xu, W. Wu, M. Wu and J.-S. Hu, *Applied Catalysis B: Environmental*, 2019, **251**, 240-246.
- 33. R. Soni, S. N. Bhange and S. Kurungot, *Nanoscale*, 2019, **11**, 7893-7902.
- G. Wang, J. Deng, T. Yan, J. Zhang, L. Shi and D. Zhang, *Nanoscale*, 2020, **12**, 5601-5611.

- 35. Y. Wang, R. Gan, H. Liu, M. Dirican, C. Wei, C. Ma, J. Shi and X. Zhang, *Journal of Materials Chemistry A*, 2021, **9**, 2764-2774.
- 36. Y. Huang, K. Liu, S. Kan, P. Liu, R. Hao, W. Liu, Y. Wu, H. Liu, M. Liu and K. Liu, *Carbon*, 2021, **171**, 1-9.
- C. C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu and Q. Xu, *Angewandte Chemie*, 2020, 132, 7454-7459.
- L. Xie, X. P. Zhang, B. Zhao, P. Li, J. Qi, X. Guo, B. Wang, H. Lei, W. Zhang and U. P. Apfel, *Angewandte Chemie International Edition*, 2021, 60, 7576-7581.
- 39. P. K. Gangadharan, A. Pandikassala and S. Kurungot, ACS Applied Materials & Interfaces, 2021, 13, 8147-8158.
- 40. F. Zhou, P. Yu, F. Sun, G. Zhang, X. Liu and L. Wang, *Journal of Materials Chemistry* A, 2021, 9, 6831-6840.
- 41. Y.-W. Li, W.-J. Zhang, J. Li, H.-Y. Ma, H.-M. Du, D.-C. Li, S.-N. Wang, J.-S. Zhao, J.M. Dou and L. Xu, ACS Applied Materials & Interfaces, 2020, 12, 44710-44719.
- 42. X. Zhang, S. Zhang, Y. Yang, L. Wang, Z. Mu, H. Zhu, X. Zhu, H. Xing, H. Xia and B. Huang, *Advanced Materials*, 2020, **32**, 1906905.
- 43. X. Cui, S. Yang, X. Yan, J. Leng, S. Shuang, P. M. Ajayan and Z. Zhang, *Advanced Functional Materials*, 2016, **26**, 5708-5717.
- G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. Brett, A. B. Fuertes,M. Sevilla and M.-M. Titirici, *ACS nano*, 2016, 10, 5922-5932.
- 45. K. Hu, L. Tao, D. Liu, J. Huo and S. Wang, *ACS applied materials & interfaces*, 2016,
 8, 19379-19385.