Supporting information

Carrier Dynamics in Two-Dimensional Perovskites: Dion-Jacobson vs. Ruddlesden-Popper thin films

Chaochao Qin, a Liuhong Xu, Zhongpo Zhou, *a Jian Song, Shuhong Ma, Zhaoyong Jiao, Yuhai Jiang*b

^a Henan Key Laboratory of Infrared Materials and Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, 453007, China.

^b Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.

Figure S1. The steady-state absorption (solid line) and photoluminescence (dashed line) spectra for FAPbI₃ (n= ∞ for (PDMA)FA_{n-1}Pb_nI_{3n+1} and (PEA)₂FA_{n-1}Pb_nI_{3n+1}).

Figure S2. TA measurements for (PDMA)FA_{n-1}Pb_nI_{3n+1} (<n> = 3) films and (PEA)₂FA_{n-1}Pb_nI_{3n+1} (<n> = 3) films excited from front side (air side). (a) (d) Time- and wavelength-dependent TA images. (b) (e) TA spectra at selected probe times. (c) (f) TA spectra for different n phases as a function of delay time.

Figure S3. (a) HRTEM image of the (PDMA)Pbl₄ film with d=7.1 Å for (111) plane. (b) HRTEM image of the (PEA)₂Pbl₄ film with d=3.2 Å for (0010) plane. Insets: Fast Fourier transforms (FFT) of the selected area diffraction.