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Supplementary Information

Theoretical framework

Defect formation energy ∆HF (α, q)

Beyond materials properties predictions, the first-principles approach is a powerful tool to understand the behaviour
of defects in semiconductor compounds [S1–S4]. Within the density functional theory (DFT) formalism, several
assumptions are made to model lattice defects in order to balance the results accuracy and the required numerical
and time cost. In this work, the supercell approach is considered and the calculations are performed with a 64-atoms
supercell corresponding to an expansion of 2 × 2 × 2 of the kesterite conventional cell as presented in Figure S1.
The size of the computational box is assumed to be large enough to allow for the full relaxation of the defect-induced
elastic constraint over the supercell dimension. Consequently, we assume no mechanical stress due to interaction
between defects and their periodic repetitions produced by the applied periodic boundary conditions. In addition, the
long range Coulomb interaction between charged defects is accounted for via a correction term added to the defect
formation energy relation as described later on.

Cu

Zn

Sn

Ge

S

FIG. S1: Undefected kesterites 64-atoms supercells used to compute the defects formation energies. The supercell corresponds
to an expansion of 2 × 2 × 2 of the kesterite conventional cell as represented by the grey shadings.

Using the supercell approach, the formation energy of a defect α in a charge state q can be calculated as

∆HF (α, q, EF , µi) = E(α, q)− Ehost −
∑
i

ni(Ei + µi) + q[εVBM,host + EF ], (S1)

where E(α, q) is the total energy of the supercell with a defect α in the charge state q. Ehost is the total energy of
the 64-atom undefected supercell while ni is the number of atom(s) of the species i removed (< 0) from or added (> 0)
to the host supercell with Ei, the energy per atom of the pure phase of the species i and µi, the chemical potential of
the corresponding element. The third term accounts for an exchange of particles between the system under study and
an external reservoir implying an energy transfer according to the chemical potential of the species. Then, assuming a
defect in a charge state q, an extra term is added to this equation which considers an exchange of charge(s) between an
external electronic reservoir and the system under study. In this term, εVBM,host refers to the valence band maximum
(VBM) of the host supercell and EF is the Fermi level acting as a parameter of the defect formation energy function
and ranging from the VBM to the band gap energy EG of the kesterite material. By taking a closer look into this
equation, one can observed that for each intrinsic point defect α in a charge state q, the formation energy depends
on two variables:

1. The energy exchanged due to the exchange of particles between an external reservoir and the system µi: this
chemical potential parameter is linked to the experimental conditions under which the material is synthesised
such as the atmosphere, the pressure, the temperature, ... etc. The values of µi are set by the position in the
phase diagram of the material.
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2. For a charged defect, the energy exchanged due to the transfer of charges related to the Fermi energy value
EF ∈ [0;EG].

Figure S2 shows a schematic representation of a defect formation energy considering three charge states: 0, -1,
-2 is presented. Each charge state corresponds, according to Equation S1, to a line with a slope given by the charge
state q. The lowest formation energy (the plain line) represents the minimal defect formation energy as a function of
the Fermi level.

Furthermore, based on the formation energy of a given defect, it is possible to extract its ionisation levels. This
allows to classify the behaviour of the defect via the determination of the energetic position of the ionisation levels.
For a level located close to the edges of the band gap (i.e. the conduction band minimum: EF ' EG or the valence
band maximum: EF ' 0), the defect can be classified as donor/acceptor. In opposition, defects close to the middle
of the band gap will be classified as deep defects or recombination centres which could lead to a degradation of the
solar cell performances depending on the defect concentration and carrier capture cross section. The defect ionisation
energies are calculated using the following relation:

E(α, q, q′) =
∆HF (α, q)−∆HF (α, q′)

q′ − q
, (S2)

where q and q′ are the charge states of the defect α considered for the transition. As a consequence, this transition
energy correspond to the Fermi energy EF for which the defect in a charge state q has the same formation energy as
the defect in a charge state q′. Furthermore, as shown in Figure S2, the transition levels correspond to the intersection
between each dashed line. These transitions are represented via a marker whose abscissa corresponds to the energetic
position of the transition level in the materials band gap.
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FIG. S2: Schematic representation of the evolution of a defect formation energy in which three charge states are considered:
0, -1, -2 giving three possible transition levels: (0/-1), (0/-2) and (-1/-2). The different charge state lines are represented using
a dashed style.

Then, to compute the Fermi energy level EF under thermodynamic equilibrium conditions as described in solid
state physics, one can used the charge neutrality equation [S1]:

∑
α,q

qC(α(q)) + p− n = 0, (S3)

where n, p is respectively the electron and the hole concentrations, and C(α(q)) is the concentration of the defect
α in its charge state q.The defect concentration C(α(q)) is directly related to its formation energy as follow:
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C(α(q)) = Nexp

(
−∆HF (α, q)

kBT

)
, (S4)

with N the number of possible sites where the defect α could be formed. In addition, the integration of the
electronic density of states g(E) multiplied by the Dirac distribution gives the number of charge carrier participating
to the materials conductivity (n- or p-type). Therefore, one can write:

n− p =

∫ ∞
−∞

dE
g(E)

1 + exp(E − EF /kBT )
−Ne =

∑
α,q

qC(α(q)), (S5)

where Ne the number of electron in the neutral bulk cell. Moreover, for a non-degenerate semiconductor, the
electron (resp. hole) concentration can be assumed to follow a Boltzmann distribution:

n = NC exp

(
− EC − EF

kBT

)
(S6)

p = NV exp

(
− EF − EV

kBT

)
, (S7)

where NC = 2

(
2πm∗

ekBT
h2

)3/2

and NV = 2

(
2πm∗

hkBT
h2

)3/2

. With h the planck constant.

Using the electron (resp. hole) effective masses m∗e (resp. m∗h) of Ref.[S5], the Fermi energy EF can be iteratively
found using Equation S5. In this work, the Fermi energy under thermodynamic equilibrium conditions was assumed
to be found for a charge concentration criterion value upon 5× 1013 cm−3.
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FIG. S3: Evolution of the Fermi energy level under thermodynamic equilibrium conditions as a function of the stoichiometry
path as labelled in Figure 2 of the paper. See Table S2 for the specific chemical potential values.

Phase diagram

A variation in the material synthesis conditions can induce changes to the thin film composition and, consequently,
the environment in which the defect will be formed. As a result, the formation energy of the point defect and its
concentration will be impacted accordingly to the amount of energy required for the exchange of particles necessary
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to form the defect. This energetic cost is described by the chemical potential of the chemical species (µi) which is
defined as the Gibbs free energy variation caused by the exchange of particles between the system and an external
reservoir, namely: µi = ( dGdNi

) [S1]. One thus has to determine the chemical potentials µi that lead to the formation
of a stable kesterite phase without any secondary phase. In order to address this challenge, kesterite phase diagrams
have to be computed by fulfilling the following thermodynamic conditions :

(i) First, each chemical potential related to a species should favour the formation of the kesterite material instead
of the species pure crystalline phase. A chemical potential value equal to 0 corresponding to the pure element
crystalline phase (e.g. µCu = 0 implies a pure phase of Cu), the chemical potential values should be strictly
negative to avoid the formation of pure compounds. This condition is expressed by the following inequalities:

µCu < 0, µZn < 0, µX < 0, µS < 0. (S8)

(ii) Second, the sum of the chemical potentials must be equal to the formation energy of the desired compound, i.e.
the kesterite material: Cu2ZnXS4 (X =Sn,Ge). This condition means that under thermodynamic equilibrium
conditions, the desired stable phase is the kesterite compound:

∆HF (Cu2ZnXS4) = 2µCu + µZn + µX + 4µS . (S9)

Based on this equation and knowing the kesterite formation energy, one variable can be isolated as follow:

µS = [∆HF (CZXS)− µZn − µX − 2µCu]/4. (S10)

As a result, the phase diagram of this quaternary compound can be represented as a 3-dimensional map. For
the sake of clarity, in this work, we represent the kesterite phase diagrams using a 2D-plot (µX (X=Sn,Ge) VS
µZn) for a fixed value of µCu.

(iii) Third, based on the chemical species involved, several secondary phases could form. It is known that kesterite
compounds are synthesised through a chemical path including binary or ternary compounds [S6]. Nevertheless,
such secondary phases are detrimental for solar cell applications and are consequently undesired [S7]. The
condition to be respected to avoid their formation can be expressed as follow: the sum of the involved chemical
species potential values must be lower than the formation energy of the secondary phase under consideration.
The formation energy of a compound being the difference between the compound total energy and the pure
phase energy of each element within the compound: ∆HF (AiBj) = EAi,Bj

− niEA − njEB .

∑
i

niµi < ∆HF (Xi, ni) (S11)

Finally, in order to compute the formation energy of Ge-related defects (dopants) in the Sn-kesterite compound, one
has to compute the Ge chemical potential µGe within the Sn-matrix. To do so, additional secondary phases including
the Ge element were calculated. Using Equation S9 combined with the criterion expressed in Equation S11, the Ge
chemical potential was obtained.

As pointed out by Wexler et.al.in Ref.[S8], using the SCAN exchange-correlation functional, the formation energy
in absolute value of every compound containing Ge is systematically underestimated with respect to experimental
values. To deal with this effect, a correction of -0.27 eV/Ge was applied to each secondary phase formation energy
for Ge-containing material.

From now on, using Equation S1 and the chemical potential values obtained from the description above, one can
compute the defect formation energies for various charge states and thermodynamic environments.
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Corrections terms

To accurately predict the defect formation energies, two correction terms were added to Equation S1. First, a
potential alignment term, and second, a correction term dealing with the electrostatic interaction between charged
defects located in the neighbour supercell images as a result of the periodic conditions used in the ab initio approach
[S9, S10].

- The first correction arises from the divergence of the electrostatic potential upon charging. In consequence, the
net energy is ill defined, and reference levels have to be aligned using Kohn-Sham energy levels of core orbitals
of atoms located far from the defect.

- The second correction comes from the need to suppress the interaction between the charged defect located in the
supercell and the ones located in the image supercells produced by the periodic boundary conditions applied.
To do so, we correct the image charge interactions by adding to Equation S1, the following term :

∆Ei = [1 + csh(1− ε−1)]
q2αM
2εL

, (S12)

where csh is a value dependent on the crystal symmetry, ε is the dielectric constant, αM is the crystal Madelung
constant and L is the characteristic size of the supercell.

Methodology - Secondary phases

We computed the phase diagrams based on the thermodynamic conditions expressed previously. The pristine
kesterite formation energies calculated are:

• ∆HF (Cu2ZnSnS4) = −4.572 eV

• ∆HF (Cu2ZnGeS4) = −4.573 eV

The following secondary phase formation energies were computed in both kesterites:

Cu2ZnSnS4 secondary phases ∆HF [eV] Cu2ZnGeS4 secondary phases ∆HF [eV]

Cu2SnS3 -2.496 Cu2GeS3 -2.497

Cu7S4 -2.941 Cu7S4 -2.941

CuS -0.493 CuS -0.493

CuS2 -0.215 CuS2 -0.215

SnS -0.847 GeS -0.441

SnS2 -1.237 GeS2 -1.186

ZnS -1.897 ZnS -1.897

ZnS2 -1.422 ZnS2 -1.422

Cu2GeS3 -2.496 / /

Cu3Ge -0.145 / /

GeS -0.441 / /

GeS2 -1.190 / /

SnGeS3 -2.065 / /

TABLE S1: Secondary phases computed

In Table S2, we present the chemical potential values corresponding to the stoichiometry points labelled in the
Figure 2 of the paper.
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Chemical potentials Cu2ZnSnS4 Cu2ZnGeS4

µCu [eV] µZn [eV] µSn [eV] µS [eV] µGe [eV] µCu [eV] µZn [eV] µGe [eV] µS [eV]

A -0.27 -1.25 -0.202 -0.64 -0.31 -0.27 -1.10 0 -0.73

B -0.27 -1.52 -0.29 -0.55 -0.58 -0.27 -1.34 0 -0.67

C -0.27 -1.82 -1.18 -0.26 -1.46 -0.27 -1.82 -1.17 -0.19

D -0.27 -1.64 -1.36 -0.26 -1.46 -0.27 -1.64 -1.36 -0.19

E -0.55 -1.56 -0.56 -0.34 -0.79 -0.55 -1.51 -0.40 -0.32

F -0.55 -1.92 -0.92 -0.16 -1.21 -0.55 -1.87 -0.75 -0.14

G -0.55 -2.08 -1.50 -0.05 -1.85 -0.55 -2.08 -1.49 -0.05

H -0.55 -1.91 -1.68 -0.05 -1.85 -0.55 -1.90 -1.68 -0.05

I -0.82 -2.00 -1.54 0 -1.87 -0.82 -1.97 -1.39 -0.02

TABLE S2: Chemical potential values corresponding to the labelled point in the phase diagrams (see Figure 2).

Kesterite crystal structure

In Table S3, we present the lattice structural parameters of both Cu2ZnSnS4 and Cu2ZnGeS4.

Parameters Cu2ZnSnS4 Cu2ZnGeS4

a,b [Å] 5.40 5.30

c [Å] 10.79 10.51

V [Å
3
] 314.9 294.87

TABLE S3: Kesterite lattice parameters.
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