Electronic Supplementary Information

Stabilization of Ruthenium Nanoparticles over NiV-LDH Surface for Enhanced Electrochemical Water Splitting: An Oxygen Vacancy Approach

Arun Karmakar, ^{†‡} Kannimuthu Karthick, ^{†‡} Selvasundarasekar Sam Sankar, ^{†‡} Sangeetha Kumaravel, ^{†‡} Ragunath Madhu, ^{†‡} Krishnendu Bera, ^{†‡} Hariharan N Dhandapani, ^{†‡} Sreenivasan Nagappan, ^{†‡} Palanichamy Murugan^{†@*} and Subrata Kundu ^{†‡*}

[†]*Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.*

[‡]Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.

[@]Electrochemical Power Source (ECPS) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.

*To whom correspondence should be addressed, *E-mail: skundu@cecri.res.in; kundu.subrata@gmail.com, murugan@cecri.res.in,* Phone/Fax: (+ 91) 4565-241487.

This file contains 31 pages in which the details of reagents, methods of synthesis, electrochemical characterizations, electrochemical results, characterizations like SEM, FE-SEM and post OER and post HER SEM, FE-SEM, HR-TEM and XPS results are provided.

Number of Figure: 21

Number of Table: 1

Figures	Subject of the Figure	Page number
S1	Low to high magnified FE-SEM images of NiV- LDH materials revealing the sheet-like morphology.	<u>S8</u>
S2	Low to high magnified FE-SEM images of Ru@NiV-LDH materials revealing the sheet like morphology.	S 9
S3	EDS spectrum of NiV-LDH with corresponding quantification of all the expected elements.	S10
S4	EDS spectrum of NiV-LDH with corresponding quantification of all the expected elements	S11
S5	Low to high magnified FE-SEM images of NiV- LDH(Vo) revealing sheet like structure was retained even after vacancy creation through the NaBH4 reduction under hydrothermal condition and EDS spectrum obtained in FE-SEM mode.	S12
S6	Combined XPS survey spectrum of NiV-LDH and Ru@NiV-LDH.	S13
S7	DFT optimized structure of Ru6, Ru8 and Ru14 clusters.	S14
S8	 (a) Ball and stick model of optimized structure of monolayer of Ni5/6V1/6(OH)2 compound (top view); (b) Ru6 cluster deposited on Ni5/6V1/6(OH)2 compound, and (c) closer view of (b) to understand bonding between O-Ru atoms. Blue, light grey, red, turquoise blue and white balls represent Ni, V, O, Ru and H atoms, respectively. Dotted black line indicates boundary of supercell. Bond distances are shown in Å. 	S15
S9	(a) Optimized structure of Ru6 cluster adsorbed on oxygen deficient surface (b) closer view of the cluster and surface. Blue, light grey, red, turquoise blue and white balls represent Ni, V, O, Ru and H atoms, respectively. Dotted line indicates boundary of supercell. Bond distances are shown in Å.	S16
S10	(a) Optimized structure of Ru6 cluster adsorbed on oxygen deficient surface (b) closer view of the cluster and surface. Blue, light grey, red, turquoise blue and white balls represent Ni, V, O, Ru and H atoms, respectively. Dotted line indicates boundary of supercell. Bond distances are shown in Å.	S17
S11	LSV polarization curve for Ru@CC obtained at a scan rate of 5 mV/sec in 1 M KOH solution.	S18
S12	(a-d) are the CVs recorded in a non-faradaic region with increasing scan rate for the	819

	determination of ECSA from its double layer capacitance taking NiV-LDH, NiV-LDH(Vo), NiVRu-LDH and Ru@NiV-LDH respectively.	
S13	(a), (b) and (c) Reduction surface area of Ru@NiV-LDH, NiV-LDH and NiV-LDH (Vo)respectively.	S21
S14	Faradaic efficiency plot obtained by plotting the amount of O2 produced at different time interval.	S22
S15	LSV polarization curves for Ru@NiV-LDH materials before and after the AD study.	S23
S16	LSV polarization curves of NiV-LDH(Vo) and Ru@CC under HER condition.	S24
S17	EIS analysis of NiV-LDH and Ru@NiV-LDH in HER condition.	825
S18	(a-b) CV curves obtained at different scan rate for NiV-LDH and Ru@NiV-LDH respectively; (c) corresponding Cdl plot and (d) ECSA normalized LSV polarization curves.	S26
S19	XRD patern of Ru@NiV-LDH before and after the electrolysis.	S27
S20	Pre and post OER, FE-SEM picture of Ru@NiV-LDH.	S28
S21	(a-c) low to high magnified Post OER HR-TEM images of Ru@NiV-LDH nanosheets; (d) HAADF area chosen for colour mapping and (e-k) showing the colour mapping results of HAADF+Ni+V, mix, Ni K shell, V K shell, O K shell and C K shell orbitals respectively.	S29
S22	 (a) high resolution XPS spectra of Ni 2p orbitals post OER Ru@NiV-LDH respectively; (b) Ru 3d XPS result; (c) High resolution XPS spectra of V 2p orbital; (d) O 1s orbital XPS spectra. 	S30
	References	\$31

Reagents and Instruments:

Nickel chloride (NiCl₂), Vanadium trichloride (VCl₃), RuCl₃.xH₂O and Sodium borohydride (NaBH₄) were were purchased from Sigma-Aldrich and used as received. Sodium carbonate (Na₂CO₃) was purchased from Merck and used as received. Ni foam was procured from Sigma-Aldrich and used after surface cleaning. The electrochemical analyzer AURT-M204 was used for all electrochemical characterizations. Hg/HgO reference electrode (in 1 M KOH), SCE reference electrode (in 0.5 M H₂SO₄) were purchased from CH instruments and

carbon cloth as counter electrode from Alfa-Aesar were used throughout the electrochemical studies. DI water was used throughout entire experiments. The as prepared catalysts with different stoichiometric ratios were characterized with HR-TEM, (TecnaiTM G² TF20) working at an accelerating voltage of 200 kV and by Talos F-200-S with HAADF elemental mapping. Color mapping and Energy Dispersive X-ray Spectroscopy (EDS) analysis were carried out with the FESEM instrument with the images (SUPRA 55VP Carl Zeiss) with a separate EDS detector connected to that instrument. Scanning Electron Microscopy (SEM) analysis was carried with a Hitachi, Japan make model S-3000H instrument having magnification 30X to 300 KX with the accelerating voltage ~ 0.3 to 30 kV. The XRD analysis carried out with a scanning rate of 5° min⁻¹ in the 2θ range 10-90° using a Rigaku Xray powder diffractometer (XRD) with Cu K_a radiation ($\lambda = 0.154$ nm). X-ray photoelectron spectroscopic (XPS) analysis was performed using a Theta Probe AR-XPS system (Thermo Fisher Scientific, UK). ICP-MS analysis was carried by using iCAP RQ from thermoscientific instrument. For ICP analysis, 1 ml of stock solution was taken and evaporate to dryness at 90 °C to remove the water from the sample. Then it was digested by adding aqua regia followed by heating for 1 to 2 minutes. Then the resulted solution was used for analysis by diluting 10 times with water.

Synthesis of NiV-LDH(V₀):

For the typical synthesis, 150 mg of NiV-LDH powder was taken in 100 ml beaker containing 30 mL of DI water subsequently stirred for 15 min to ensured homogeneity of the solution. After that the solution was transferred into 50 mL Teflon lined autoclave followed by addition of 0.11 g of NaBH₄. The whole solution was kept in hydrothermal condition for 6 hours at a temperature of 180 °C. After cooling, solid product was collected by centrifugation. The solid was washed with ethanol water mixture for the five times to remove the sodium ions from the surface.

Computational Methodology:

All results used in this work are obtained by employing plane wave based first principles DFT calculations as implemented in Vienna *Ab initio* Simulation Package (VASP). All atoms are described by projector augmented wave pseudopotential formalism (PAW)¹ and exchange correlations for electron-electron interactions are corrected by generalized gradient approximations (GGA).²The kinetic energy cut-off of 400 eV is used for plane-wave basis sets. O, OH, and OOH species are allowed to adsorb on Ru₈ cluster adsorbed on surface to deduce the chemical reaction co-ordinate diagram. The sufficient vacuum space of 7 - 8 Å is considered to nullify the interaction between the slab and its periodic images. The Brillouin zone is sampled using Gamma centered 5×5 k-mesh. All the ions are fully relaxed without considering any symmetry. The iterative relation processes are repeated until the absolute force on each ion is converged to 10^{-5} eV in all the calculations. Entire calculations are performed by the spin polarized calculations, in which, moments of all transition metal atoms are ferromagnetically aligned.

Initially, the supercell with size of $2\sqrt{3} \times 2\sqrt{3}$ monolayered Ni(OH)₂ compound was modelled and understood the interaction between this surface and Ru clusters. The cell parameter (a = 3.08 and $\gamma = 120^{\circ}$) is taken from our present experiment. Three different sized Ru atomic clusters (Ru₆, Ru₈, and Ru₁₄) are considered for their adsorption onto this surface in order to deduce the consistency of our results. These clusters are deposited onto pristine Ni(OH)₂ surface and the structural and energetics are deduced by performing first principles calculations. The optimized structures of three clusters adsorbed on this surface are shown in Fig. S8 (supporting information). The adsorption energy is obtained from,

$$E_{ad} = E_{clean} + E_{cluster} - E_{adsorbed}$$

where, E_{clean} , $E_{cluster}$, and $E_{adsorbed}$ are total energies of clean surface, isolated Ru cluster, and cluster adsorbed on the surface, respectively.

Determination of Surface concentration of various alloys from the redox features of CV:

• Calculated area associated with the oxidation of Ni^{3+} to Ni^{2+} of **NiV-LDH** = 0.00143 VA

Hence, the associated charge is = 0.00143VA / 0.005 Vs-1

= 0.286 As

= **0.286** C

Now, the number of electron transferred is = $0.286 \text{ C} / 1.602 \times 10^{-19}$

 $= 1.785 \times 10^{17}$

Since, the reduction of Ni³⁺ to Ni²⁺ is a single electron transfer reaction, the number electron calculated above is exactly the same as the number of surface-active sites.

Hence, the number of Ni participate in OER is = 1.785×10^{17}

Determination of Turnover Frequency (TOF) from OER Current Density TOF in our study was calculated assuming that the surface-active Co atoms that had undergone the redox reaction just before onset of OER only participated in OER electrocatalysis. The corresponding expression is,

$$TOF = \mathbf{i} \times \mathbf{N}_{\mathbf{A}} / \mathbf{F} \times \mathbf{n} \times \Gamma$$

Where, j = current density N_A= Avogadro number F = Faraday constant n = Number of electrons Γ = Surface concentration.

Hence, we have,

 $\text{TOF}_{1.50 \text{ V}} = [(5.37 \times 10^{-4}) (6.023 \times 10^{23})] / [(96485) (4) (1.785 \times 10^{17})]$

 $= 0.00469 \text{ sec}^{-1}$

• Calculated area associated with the oxidation of Ni³⁺ to Ni²⁺ of NiV-LDH(V₀) = 0.00171 VA

Hence, the associated charge is = 0.00171VA / 0.005 Vs-1

= **0.342** C

Now, the number of electron transferred is = $0.342 \text{ C} / 1.602 \times 10^{-19}$

 $= 2.13 \times 10^{17}$

Since, the oxidation of Ni³⁺ to Ni²⁺ is a single electron transfer reaction, the number electron calculated above is exactly the same as the number of surface-active sites.

Hence, the number of Ni participate in OER is = 2.13×10^{17}

Hence,

 $\text{TOF}_{1.50V} = [(7.6 \times 10^{-4}) (6.023 \times 10^{23})] / [(96485) (4) (2.13 \times 10^{17})]$

 $= 0.00556 \text{ sec}^{-1}$

Calculated area associated with the oxidation of Ni³⁺ to Ni²⁺ of Ru@NiV-LDH = 0.00287 VA

Hence, the associated charge is = 0.00287 VA / 0.005 Vs-1

= 0.574 As

= **0.574** C

Now, the number of electron transferred is = $0.574 \text{ C} / 1.602 \times 10^{-19}$

$$= 3.58 \times 10^{17}$$

Since, the reduction of Ni³⁺ to Ni²⁺ is a single electron transfer reaction, the number electron calculated above is exactly the same as the number of surface-active sites.

Hence, the number of Ni participate in OER is = 3.58×10^{17}

Hence,

 $\text{TOF}_{1.50V} = [(8.6 \times 10^{-3}) (6.023 \times 10^{23})] / [(96485) (4) (3.58 \times 10^{17})]$

 $= 0.0374 \text{ sec}^{-1}$

Figure S1: (a-c) low to high magnified FE-SEM images of NiV-LDH materials revealing the sheet-like morphology.

Figure S2: (a-c) low to high magnified FE-SEM images of Ru@NiV-LDH materials revealing the sheet like morphology.

Figure S3: EDS spectrum of NiV-LDH with corresponding quantification of all the expected elements.

Figure S4: EDS spectrum of Ru@NiV-LDH with corresponding quantification of all the expected elements.

Figure S5: (a-b) low to high magnified FE-SEM images of NiV-LDH(Vo) revealing sheet like structure was retained even after vacancy creation through the NaBH4 reduction under hydrothermal condition and (c) EDS spectrum obtained in FE-SEM mode.

Figure S6: Combined XPS survey spectrum of NiV-LDH and Ru@NiV-LDH.

Figure S7: DFT optimized structure of Ru_6 , Ru_8 and Ru_{14} clusters.

Figure S8: (a) Ball and stick model of optimized structure of monolayer of $Ni_{5/6}V_{1/6}(OH)_2$ compound (top view); (b) Ru₆ cluster deposited on $Ni_{5/6}V_{1/6}(OH)_2$ compound, and (c) closer view of (b) to understand bonding between O-Ru atoms. Blue, light grey, red, turquoise blue and white balls represent Ni, V, O, Ru and H atoms, respectively. Dotted black line indicates boundary of supercell. Bond distances are shown in Å.

Figure S9: (a) Optimized structure of Ru₆ cluster adsorbed on oxygen deficient surface (b) closer view of the cluster and surface. Blue, light grey, red, turquoise blue and white balls represent Ni, V, O, Ru and H atoms, respectively. Dotted line indicates boundary of supercell. Bond distances are shown in Å.

Figure S10: (a) Optimized structure of Ru_6 cluster adsorbed on oxygen deficient surface (b) closer view of the cluster and surface. Blue, light grey, red, turquoise blue and white balls represent Ni, V, O, Ru and H atoms, respectively. Dotted line indicates boundary of supercell. Bond distances are shown in Å.

Figure S11: LSV polarization curve for Ru@CC obtained at a scan rate of 5 mV/sec in 1 M KOH solution.

Figure S12: (a-d) are the CVs recorded in a non-faradaic region with increasing scan rate for the determination of ECSA from its double layer capacitance taking NiV-LDH, NiV-LDH(V_o), NiVRu-LDH and Ru@NiV-LDH respectively.

Sl. No.	Catalysts	Overpotential (mV)	Tafel Slope (mV/dec)	Ref.
1	Co ₂ (OH) ₃ Cl/vanadium oxide	282@ 10 mA/cm ²	56	3
2	Co-V Hydroxide Nanoneedle	268@ 10mA/cm ²	80	4
3	a-CoVO _x	347@ 10 mA/cm ²	35	5
4	wrinkled Ni(OH) ₂	358.2@ 10mA/cm ²	54.4	6
5	Cobalt–Iron–Vanadium Layered Double Hydroxide	242@ 10mA/cm ²	57	7
6	Ni(OH) ₂	437@ 10mA/cm ²	127	8
7	NiO _x	331@ 10mA/cm ²	47	9
8	3D CeO ₂ /Ni(OH) ₂ /carbon foam	>350@ 10mA/cm ²	57	10
9	FeOOH on Ni(OH) ₂	245@ 50mA/cm ²	45	11
10	NiV-LDH@FeOOH	297@ 100mA/cm ²	57.3	12
11	VO(OH) ₂ nanosheets grown on NiFe LDH nanoflowers	280@ 100mA/cm ²	65	13
12	Nickel–vanadium monolayer double hydroxide	>300@ 10mA/cm ²	50	14
13	V-doped CoP nanoparticles	340@ 10mA/cm ²	-	15
14	Ru@NiV-LDH	272@ 10mA/cm ²	40	This work

 Table S1: Comparison study of the electrocatalytic performance of synthesized Ru@NiV-LDH

 catalyst compared to similar types of catalysts.

Figure S13: (a), (b) and (c) Reduction surface area of Ru@NiV-LDH, NiV-LDH and NiV-LDH (V_o)respectively.

Figure S14: Faradaic efficiency plot obtained by plotting the amount of O₂ produced at different time interval.

Figure S15: LSV polarization curves for Ru@NiV-LDH materials before and after the AD study.

Figure S16: LSV polarization curves of NiV-LDH(Vo) and Ru@CC under HER condition.

Figure S17: EIS analysis of NiV-LDH and Ru@NiV-LDH in HER condition.

Figure S18: (a-b) CV curves obtained at different scan rate for NiV-LDH and Ru@NiV-LDH respectively; (c) corresponding C_{dl} plot and (d) ECSA normalized LSV polarization curves.

Figure S19: XRD pattern of Ru@NiV-LDH before and after the electrolysis.

Figure S20: Pre and post OER, FE-SEM picture of Ru@NiV-LDH.

Figure S21: (a-c) Low to high magnified Post OER HR-TEM images of Ru@NiV-LDH nanosheets; (d) HAADF area chosen for colour mapping and (e-k) showing the colour mapping results of HAADF+Ni+V, mix, Ni K shell, V K shell, O K shell and C K shell orbitals respectively.

Figure S22: (a) High resolution XPS spectra of Ni 2p orbitals post OER Ru@NiV-LDH respectively; (b) Ru 3d XPS result; (c) High resolution XPS spectra of V 2p orbital; (d) O 1s orbital XPS spectra.

References

- 1 N. Holzwarth, G. Matthews, R. Dunning, A. Tackett and Y. Zeng, *Phys. Rev. B Condens. Matter Mater. Phys.*, 1997, **55**, 2005–2017.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 3 K. Fan, H. Zou, L. Duan and L. Sun, *Adv. Energy Mater.*, 2020, **10**, 1–9.
- M. Yang, X. Fu, M. Shao, Z. Wang, L. Cao, S. Gu, M. Li, H. Cheng, Y. Li, H. Pan and
 Z. Lu, *ChemElectroChem*, 2019, 6, 2050–2055.
- 5 L. Liardet and X. Hu, ACS Catal., 2018, 8, 644–650.
- Y. Dou, L. Zhang, J. Xu, C. T. He, X. Xu, Z. Sun, T. Liao, B. Nagy, P. Liu and S. X.
 Dou, ACS Nano, 2018, 12, 1878–1886.
- 7 Y. Hu, Z. Wang, W. Liu, L. Xu, M. Guan, Y. Huang, Y. Zhao, J. Bao and H. M. Li, ACS Sustain. Chem. Eng., 2019, 7, 16828–16834.
- 8 G. Zhao, P. Li, N. Cheng, S. X. Dou and W. Sun, *Adv. Mater.*, 2020, **32**, 1–9.
- 9 L. A. Stern and X. Hu, *Faraday Discuss.*, 2014, **176**, 363–379.
- Z. Liu, N. Li, H. Zhao, Y. Zhang, Y. Huang, Z. Yin and Y. Du, *Chem. Sci.*, 2017, 8, 3211–3217.
- W. Guo, D. Li, D. Zhong, S. Chen, G. Hao, G. Liu, J. Li and Q. Zhao, *Nanoscale*, 2020, 12, 983–990.
- W. Bao, L. Xiao, J. Zhang, Z. Deng, C. Yang, T. Ai and X. Wei, *Chem. Commun.*, 2020, 56, 9360–9363.
- J. Tang, X. Jiang, L. Tang, Y. Li, Q. Zheng, Y. Huo and D. Lin, *Dalt. Trans.*, 2021, 50, 1053–1059.
- K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo,F. Li, Y. Luo and L. Sun, *Nat. Commun.*, 2016, 7, 1–9.
- 15 J. F. Qin, J. H. Lin, T. S. Chen, D. P. Liu, J. Y. Xie, B. Y. Guo, L. Wang, Y. M. Chai and B. Dong, *J. Energy Chem.*, 2019, **39**, 182–187.