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Experimental Section

Chemicals

Ammonium molybdate tetrahydrate (NH4)sMo07024-4H20, 90%), cobalt nitrate hexahydrate
(Co(NO3)2:6H20, 99.9%), potassium hydroxide (KOH, 85%), iridium(IV) oxide (IrO2, 99.9%
metal basis), and Nafion (5 wt% in a mixture of low aliphatic alcohols and water) were obtained
from Sigma-Aldrich. 2-Methylimidazole (C4HsN2, 99%) was purchased from Acros Organics.
Methanol, ethanol and isopropanol were of analytical grade and obtained from various sources.
Milli-Q water was obtained from a Purelab flex from Elga. All chemicals were used as received,
without further purification.

Synthesis of zeolitic imidazolate framework (ZIF-67)

ZIF-67 was produced following a modified version of a previously reported procedure.!
Typically, 0.87 g Co(NO3)2:6H20 was dissolved in 30 mL methanol to obtain a clear solution.
Subsequently, the solution was poured into 30 mL methanol containing 1.97 g 2-
methylimidazole under vigorous stirring. After mixing completely, the solution was incubated
for 24 h at room temperature. Purple precipitates were collected by centrifugation, washed with
methanol at least three times, and finally dried at 60 °C overnight.

Synthesis of Mo-Co MOFs

120 mg of as-prepared ZIF-67 powder was ultrasonically dispersed in 20 mL ethanol. The
dispersion was poured into a 100 mL aqueous solution containing 50 mg, 100 mg or 200 mg
of (NHs)sMo07024-4H>0 under magnetic stirring. The mixture was then stirred vigorously for
12 hours at room temperature. Lavender-colored precipitates were collected by centrifugation,
washed with water at least three times, and finally freeze-dried overnight. The obtained
products were labelled as Mo-Co MOF-50, Mo-Co MOF-100 and Mo-Co MOF-200. The effect
of stirring time was analyzed by preparing Mo-Co MOF-100 with different stirring times: 1 h,
3 h and 12 h. The effect of the Mo precursor was analyzed by replacing (NH4)sMo07024:4H>O
with the equivalent molybdenum molar amount of NaxMo0QO4-2H>O, to obtain a sample labelled
as NaxMoO4-ZIF-67.

Synthesis of Co304 nanocrystals and amorphous MoCoxOy nanosheets

ZIF-67 and Mo-Co MOF powders were annealed in a muffle furnace at 350 °C for 2 h with a
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heating rate of 3 °C min™! under an air atmosphere. Black products were collected after natural
cooling to ambient temperature and labelled as Co0304 and MoCoxOy-50, MoCoxOy-100,
MoCox0y-200, and NaxMo00Os-MoCoxOy, depending on the MOF precursor powder used. To
explore the effect of the annealing temperature, the Mo-Co MOFs-100 was also annealed at
450 °C and 550 °C for 2 h. Table S1 lists all the samples produced and tested in this study.
Material Characterizations and Electrocatalytic Evaluation

Powder X-ray diffraction (XRD) patterns were obtained on a Bruker AXS D8 Advance X-ray
diffractometer with Ni-filtered (2 um thickness) Cu-Ko radiation (A= 1.5406 A) operating at 40
mA and 40 kV. Scanning electron microscopy (SEM) analysis was conducted with a Zeiss
Auriga microscope (Carl Zeiss, Jena, Germany) equipped with an energy-dispersive X-ray
spectroscopy (EDS) detector operating at 20 kV. Transmission electron microscopy (TEM)
analysis was carried out using a field emission gun FEI™ Tecnai F20 microscope at 200 kV
with a point-to-point resolution of 0.19 nm. Atomic force microscopy (AFM) measurements
were conducted using an AFM Multimode 8 system attached to a Nanoscope V electronic unit
(Bruker). Raman spectroscopy was carried out on a confocal Raman spectrometer (Renishaw
in Via Qontor) equipped with a Leica DM2700M microscope over the range of 50 to 1200 cm™.
A power of the laser of 1 mW cm 2 was kept at all samples. X-ray photoelectron spectroscopy
(XPS) analysis was carried out on a Specs system (Specs GmbH, Berlin, Germany) equipped
with an Al anode XR50 source operating at 150 W and a Phoibos 150 MCD-9 detector. The
pressure in the analysis chamber was kept below 1077 Pa. Thermogravimetric analyses (TGA)
were carried out in air atmosphere from 50 to 700 °C with a ramp of 5 °C min™' using a Diamond
TG/DTA Instruments (PerkinElmer, Waltham, MA). EPR spectroscopy was conducted on a
Bruker EMXplus instrument (Bruker, Germany) with a microwave frequency of 9.40 GHz at
100 K.

All electrochemical measurements were performed at room temperature on a CHI760E
electrochemical workstation (Shanghai Chenhua Instrument Co. Ltd., China) using a standard
three-electrode cell. A graphite rod was used as the counter electrode and Hg/HgO (1.0 M KOH)
as the reference electrode. Linear sweep voltammetry (LSV) was conducted at a scan rate of
5mVs! from 0 to 1.0 V in O-saturated 1.0 M KOH electrolyte. All the presented data were

corrected with 90% iR-compensation. Electrochemical impedance spectroscopy (EIS) analysis
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was carried out in a frequency range from 100 kHz to 0.01 Hz at 5 mV and recorded at 1.55 V.
The electrochemical double-layer capacitance (Ca) curves were obtained by cyclic
voltammetry (CV) in a non-Faradaic region (0.90-1.00 V vs. RHE) at scan rates in the range
20 to 200 mV s~ '. The long-term durability was tested using chronoamperometry at a constant
current density of 10 mA cm ™2 for 60 h without iR compensation, and by comparing the LSVs
curves (1.2 to 1.7 V) before and after 2000 CV cycles at a scan rate of 0.2 V s!. In-situ Raman
spectra were collected after different CV cycles in the range 1.3 Vto 1.7 V at a scan rate of 0.01

V s on an Xplora Plus Raman microscope (Horiba, France) with a 532 nm excitation

wavelength.
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Table S1. Complete list of samples produced and characterized, including name, precursors and

processing conditions.

Mo precursor  Stirring Annealing
Sample name Mo precursor .
amount (mg) time (h) | temperature (°C)
ZIF-67 ZIF-67 - - - -
Mo-Co MOF-50 ZIF-67 (NH4)sM07024-4H,O 50 12 -
Mo-Co MOF-100 ZIF-67 (NH4)sM070,4-4H,0 100 12 -
Mo-Co MOF-100-1h ZIF-67 (NH4)6M07024-4H,0 100 1 -
Mo-Co MOF-100-3h ZIF-67 (NH4)6M07024-4H,0 100 3 -
Mo-Co MOF-200 ZIF-67 (NH4)sM07024-4H,0 200 12 -
NaxMoOs-ZIF-67 ZIF-67 Na;MoO42H,O 140 12
Co0304 ZIF-67 - - - 350
MoCox0,-50 ZIF-67 (NH4)sM070,4-4H,0 50 12 350
MoCoxOy-100 ZIF-67 (NH4)sM07024-4H,0O 100 12 350
MoCox0Oy-100-450°C ZIF-67 (NH4)sM07024-4H,0 100 12 450
MoCox0Oy-100-550°C ZIF-67 (NH4)sM07024-4H,0 100 12 550
MoCo,0Oy-100-1h ZIF-67 (NH4)sM07024-4H,0O 100 1 350
MoCo40Oy-100-3h ZIF-67 (NH4)sM07024-4H,0O 100 3 350
MoCoxOy-200 ZIF-67 (NH4)sM07024-4H,0O 200 12 350
Na;MoO4;-MoCoxOy ZIF-67 Na;MoO42H,O 140 12 350

Figure S1. SEM images of a) ZIF-67, b) Co304, ¢c) Mo-Co MOFs-1h, d) MoCoxOy-100-1h, €)
Mo-Co MOFs-3h, f) MoCoxOy-100-3h, g) Mo-Co MOFs-12h, and h) MoCoxOy-100-12h.
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Figure S2. SEM images of a) C0304, b) MoCo0x0y-50, ¢) MoCoxOy-100 and d) MoCoxOy-200.
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Figure S3. (a-d) TEM and (e-f) HAADF STEM images of MoCoxOy-100.
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Figure. S4. EELS chemical composition maps obtained from the red squared area of the STEM
micrograph of MoCoxOy-100. Individual Mo My s-edges at 227 eV (red), Co L2 3-edges at 779
eV (green), O K-edge at 532 eV and C K-edge at 284 eV (grey) and composites of Co-O and

Mo-Co-O.
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Figure S5. XRD patterns of a) Mo-Co MOFs produced using different stirring times, b)
MoCoxOy-100 samples obtained from the annealing of Mo-Co MOFs produced with different
stirring times and ¢) MoCoxOy-100 after different annealing temperature.
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Figure S6. XRD patterns of a) Na;MoO4-ZIF-67 and b) NaxMoO4-CoOx after 350 °C
calcination.
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Figure S7. a) SEM images of Na;MoQO4-ZIF-67. b-c) SEM images and d) EDX spectrum of

Na;Mo0O4-CoOx after 350 °C calcination.
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Figure S8. a-c) SEM images and b) EDX spectrum of MoCoxOy-50 after 350 °C calcination
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Figure S10. a-c) SEM images and d) EDX spectrum of MoCoxOy-200 after 350 °C calcination
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Figure S12. a-c) SEM images and d) EDX spectrum of MoCoxOy-100 after 550 °C calcination
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Figure S13. Pore size distribution for a) Co304 and b) MoCoxOy-100
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Figure S14. a-d) Co 2p high-resolution XPS spectra of Co304 and MoCoxOy with different
molybdenum contents.
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Figure S15. a-d) O 1s high-resolution XPS spectra of Co30s and MoCoxOy with different

molybdenum contents.

Table S2. Surface ratios of Co and Mo chemical states, ratio of adsorved vs. lattice oxygen,

and Mo/Co ratio as obtained from the XPS analysis.

Samples Co*"/Co* Mo* /Mo*  0aas/Olc  Mo/Co
Co0304 3.06 - 0.62 0
MoCoxOy-50 1.96 33 0.66 0.21
MoCox0y-100 0.45 0.76 1.48 0.48
MoCox0y-200 1.33 4.2 0.56 0.29
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Table S3. Comparison of OER activity of obtained catalyst.

Catalyst [:311\0,] ’f::lf;l :(:(C)I: f
IrO2 301 66.7
Co0304 350 95.7
MoCoxOy-50 344 71.2
MoCoxOy-100 282 60.6
MoCox0y-200 322 64.2
Co-Mo MOFs 379 109.5
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Figure S16. Cyclic voltammograms for a) Mo-Co MOFs; b) IrO»; ¢) Co304 and d) MoCoxOy-
50; ) MoCoxOy-100; f) MoCo0xOy-200 in the non-faradaic region of 0.90-1.00 V vs. RHE at
various scan rates.
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Table S4. Cq and ECSAs of various catalysts.

Catalyst Ca (mF ¢cm?) ECSA (cm?)?
IrO2 1.03 25.75
Co0304 4.23 105.75
MoCoxOy-50 4.84 121.00
MoCox0y-100 7.31 182.75
MoCo0x0y-200 5.24 131.00
Co-Mo MOFs 2.31 57.75
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Figure S17. a) OER polarization curves for MoCoOx-100 annealed at different tempratures and
Na;Mo0;-CoOx. b) ECSA-normalized OER polarization curves for Mo-Co MOFs, IrO2, Co304,
MoCo0x0y-50, MoC0x0Oy-100 and MoCoxOy-200 in 1.0 M KOH.
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Figure S18. OER polarization curves of a) MoCoxOy-100 before and after 2000 cycles. b)
Co0304 at different pH values.
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Figure S19. Time-dependent concentration of Mo and Co ions dissolved in the electrolyte

during of MoCoxOy-100 a 18h chronoamperometric test at 282 mV vs. RHE

Table S5. Comparison of OER activity of amorphous MoCoxOy-100 nanosheets with recently
reported Co-based electrocatalysts in alkaline electrolyte.

Catalyst Electrolyte [Il;loga(:li::f] [:311‘0]] T;f:fl :;z_[:]e Re:::en

MoCoxOy-100 1.0 M KOH 0.15 282 60.4  This work
A-FeCo0SeOx-100 1.0 M KOH 0.27 294 45.1 2
C0304/CoMo004-50 1.0 M KOH 0.26 318 63 3
Co-LDH FNSAs 1.0 M KOH / 300 110 4
Mo002-Co:Mo030s 1.0 M KOH 0.20 320 88 5
CoVS NBs 1.0 M KOH 0.30 290 78.2 6
Co0:Mo030s 1.0 M KOH 0.14 290 87.5 [
CosAg oxide 1.0 M KOH 0.12 344 48 8
NiCoPO/NC 1.0 M KOH 0.21 300 94 9
Co0304sx HOPNPs 0.1 M KOH / 280 73.5 10
C00-MoO: 1.0 M KOH 0.5 312 75 =
C0304/C00-120s 1.0 M KOH / 302 68.6 12
CoNiP-3DHFLMs 1.0 M KOH 0.13 292 98 13
3D CoMoOS NBs 1.0 M KOH / 281 75.4 14
Co-CoO@NSC-5 1.0 M KOH 0.25 279 83 15
NixC03-xO4-y 1.0 M KOH 0.36 320 53 16
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