Supplementary Information

CO oxidation on MgAl₂O₄ supported Ir_n: Activation of

lattice oxygen in the subnanometer regime and emergence of

nuclearity-activity volcano

Yubing Lu,^{*} Coogan Thompson,^{*} Chun-Te Kuo,^a Xiwen Zhang,^a Adam S.

Hoffman,^b Alexey Boubnov, ^b Simon R. Bare,^b Libor Kovarik,^c Hongliang Xin,^a

Ayman M. Karim^{*a}

a. Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA

b. Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

c. Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 USA

‡ These authors contributed equally

*E-mail: amkarim@vt.edu

Table S1. Atomic percentage size distribution of two catalysts containing Ir subnanometer clusters,Irsubnano/MgAl2O4 and Irsubnano_Ir4/MgAl2O4.

Sample	0.1-0.3 nm	0.3-0.5 nm	0.5-0.7 nm	0.7-0.9 nm	0.9-1 nm
$Ir_{Subnano}/MgAl_2O_4$	28%	6%	30%	29%	7%
before reaction					
$Ir_{Subnano}/MgAl_2O_4$	25%	2%	31%	32%	10%
after reaction					
$Ir_{Subnano_Ir4}/MgAl_2O_4$	13%	24%	44%	21%	0%
before reaction					

Sample	Ir weight	Percentage of	0.3-0.7 nm	0.7-1 nm	> 1nm	Major species
	Loading	single atoms				
		(SA)				
Ir _{Subnano} /MgAl ₂ O ₄	0.05%	28%	36%	36%	0%	Subnano
$Ir_{Subnano_Ir4}/MgAl_2O_4$	0.1%	13%	68%	21%	0%	Subnano
$Ir_{NP}/MgAl_2O_4$	0.2%	2%	0%	22%	76%	NP
$Ir_{SA}/MgAl_2O_4$	0.0025%	~100%	0%	0%	0%	SA
$Ir_{SA+NP}/MgAl_2O_4$	1%	35%	1%	18%	46%	SA+NP
$Ir_{NP}/MgAl_2O_4$ (1wt.%)	1%	16%	0%	7%	77%	Mostly NP

Table S2. Size distribution of MgAl₂O₄ supported Ir samples measured from STEM.

Sample	Ir subnano	Ir subnano	Ir subnano	Ir subnano	Ir NP
Sample	$\mathrm{H}_2 \ 30 \ ^{\circ}\mathrm{C}$	CO 30 °C	CO 160 °C	O ₂ 30 °C	He 30 $^{\circ}C^{1}$
N _{Ir-Ir}	3.5±1.3	3.3±1.8	3.3±1.8	2.7±1.9	6.6±0.4
N _{Ir-C}		0.6±0.5	0.6±0.5	a	
N _{Ir-O}	3.2±0.5	3.3±0.6	3.3±0.6	4.1±0.6	0.2±0.1
N _{Ir-Al/Mg}	3.9±0.9	3.8±0.8	3.8±0.8	3.4±1.0	0.2±0.1
R _{Ir-Ir} (Å)	2.65±0.01	2.66±0.05	2.64±0.06	2.62±0.03	2.689 ± 0.002
R_{Ir-C} (Å)		1.88±0.1	1.95±0.1		
$R_{Ir-O(CO)}$ (Å)		3.04±0.1	3.08±0.1		
R _{Ir-O} (Å)	2.04±0.01	2.06±0.02	2.07±0.02	2.02±0.01	2.06±0.04
$R_{\text{Ir-Al/Mg}}\left(\text{\AA}\right)$	2.95±0.01	2.95±0.04	2.94±0.05	2.94±0.02	2.93±0.04
$\sigma^2{}_{\text{Ir-Ir}} \times 10^3 (\text{\AA}^2)$	5±3	6±5	8±7	9±9	5.8±0.3
$\sigma^2{}_{\text{Ir-C}}\times 10^3(\text{\AA}^2)$		0±9	0±9		
$\sigma^2_{\text{Ir-O(CO)}} \times 10^3 (\text{\AA}^2)$		2±10	3±10		
$\sigma^2{}_{\text{Ir-O}}\times 10^3(\text{\AA}^2)$	4±2	3±3	1±1	3±2	1±7
$\sigma^2{}_{\text{Ir-Al/Mg}} \times 10^3 (\text{\AA}^2)$	3±6	2±4	1±4	2±4	0±5
$\Delta E_{0 \text{ Ir-Ir}} (eV)$	1±7	1±7	1±7	1±7	7.0±0.7
$\Delta E_{0 \text{ Ir-C}} (eV)$		8±4	8±4		
$\Delta E_{0 \text{ Ir-O}} (eV)$	8±4	8±4	8±4	8±4	10±5
$\Delta E_{0 \text{ Ir-Al/Mg}} \left(eV \right)$	8±4	8±4	8±4	8±4	10±5
Reduced χ^2	103	103	103	103	16
R-factor	0.0039	0.0039	0.0039	0.0039	0.0003

Table S3. Summary of EXAFS modeling of Ir_{Subnano}/MgAl₂O₄ catalysts under different conditions.

^a The fit was not reliable with scattering paths for Ir-CO. However, CO was observed in DRIFTS (Figure 2 in the manuscript)

Notation: N, coordination number of absorber-backscatterer pair; R, radial absorber-backscatterer distance; σ^2 , the mean square displacement of the half-path length and represents the stiffness of the bond for a single scattering path, ΔE_0 , correction to the threshold energy.

Ir weight loading	Gas	Oty_adsorbed_umol/g	Gas Ir
ii weight fouding	Gus	Qty: uusoroou pinoi.g	Gubin
0.05%	СО	2.38	CO:Ir = 0.9:1
0.2%	СО	9.4	CO:Ir = 0.9:1
1% Ir/MgAl ₂ O ₄	CO	72.3	CO:Ir =1.4:1
1% Ir/MgAl ₂ O ₄	CO	53	CO:Ir =1:1
	Ir weight loading 0.05% 0.2% 1% Ir/MgAl ₂ O ₄ 1% Ir/MgAl ₂ O ₄	Ir weight loadingGas0.05%CO0.2%CO1% Ir/MgAl2O4CO1% Ir/MgAl2O4CO	Ir weight loading Gas Qty. adsorbed μmol/g 0.05% CO 2.38 0.2% CO 9.4 1% Ir/MgAl ₂ O ₄ CO 72.3 1% Ir/MgAl ₂ O ₄ CO 53

Table S4. CO volumetric chemisorption on different samples.

Sample	Active site	Active	TOF (normalized	TOF (normalized with
		Ir/surface Ir	with surface Ir) ^a	the active Ir) ^a
Ir NP	Surface Ir site	1:1	1.75	1.75
Ir subnano	Interfacial site	~ 0.53:1 ^b	5.74	9.33
Ir SA	Ir atom	1:1	1.26	1.26

Table S5. TOF of Ir catalysts with different ways of active site normalization.

a. measurement condition: 0.3 kPa CO, 10 kPa O₂, at 155 °C.
b. The active site is estimated based on a hemispherical Ir cluster model with a 0.77 nm radius. The cluster has 14 atoms in total, 13 surface Ir atoms, and 8 perimeter Ir atom at the Ir-MgAl₂O₄ interface. The ratio of active Ir (i.e. interfacial/perimeter Ir) to surface Ir sites is estimated as 0.62:1.

Figure S1. HAADF-STEM images of the Ir_{Subnano_Ir4}/MgAl₂O₄. Histogram obtained from multiple images is shown in (a).

Fig. S2. XRD for the samples in this work. The support (MgAl₂O₄) was calcined at 500 °C as described in the synthesis section. The preparation of the $Ir_{SA}/MgAl_2O_4$ and $Ir_{NP}/MgAl_2O_4$ were reported in our previous work.¹⁹ The preparation of the $Ir_{subnano}/MgAl_2O_4$ is described in the synthesis section. The calcined sample was taken after the ex-situ calcination while the reduced sample was taken after ex-situ reduction (700 °C in H₂ followed by exposure to air). The peak at $2\theta = 50$ ° is a background peak from the sample compartment/holder.

Figure S3. Ir L₃-edge X-ray absorption spectroscopy k-space data measured on $Ir_{Subnano}/MgAl_2O_4$ after H₂ pretreatment, $Ir_{NP}/MgAl_2O_4$ after H₂ pretreatment and Ir foil.

Figure S4. Ir L₃-edge Fourier transformed EXAFS spectra and fit of $Ir_{Subnano}/MgAl_2O_4$ after H₂ pretreatment. (a) magnitude and (b) imaginary part of the Fourier transformed k²-weighted $\chi(k)$ data (Δk = 2.5-12 Å⁻¹) (Δk = 2.7-16 Å⁻¹). The r-range for the fit was 1.3-3.0 Å

Figure S5. EXAFS fit to $Ir_{Subnano}/MgAl_2O_4$ after H_2 pretreatment. Contribution of different scattering paths. (Ir path = Ir–Ir; O path = Ir–O; Al path = Ir–Al) (a) R space magnitude and (b) R space imaginary.

Figure S6. Ir L₃-edge X-ray absorption near edge spectroscopy characterizing Ir_{Subnano}/MgAl₂O₄, Ir_{NP+SA}/MgAl₂O₄ and Ir_{NP}/MgAl₂O₄ (1wt.%).

Figure S7. Ir L3-edge X-ray absorption near edge spectroscopy characterizing $Ir_{SA}/MgAl_2O_4$, $Ir_{subnano}/MgAl_2O_4$, $Ir_{NP}/MgAl_2O_4$, and Ir references include Ir foil, IrO_2 and Ir_4CO_{12} . All three $Ir/MgAl_2O_4$ catalysts were measured after H₂ pretreatment.

Figure S8. Effect of (a) CO partial pressure and (b) O₂ partial pressure on turnover frequency (TOF) on $Ir_{Subnano}/MgAl_2O_4$ (blue), $Ir_{SA}/MgAl_2O_4$ (black)² and $Ir_{NP}/MgAl_2O_4$ (red)² (a) O₂ partial pressure = 10 kPa, CO partial pressure = 0.3-10 kPa. Measured at 155 °C. (b) O₂ partial pressure = 2-14 kPa, CO partial pressure = 1 kPa. Measured at 155 °C.

Figure S9. Effect of O₂ pressure on turnover frequency (TOF) on Ir_{Subnano}/MgAl₂O₄ measured at two CO partial pressures: 1 and 0.2 kPa. O₂ partial pressure was varied between 2-14 kPa. Measured at 155 °C.

Figure S10. Effect of temperature on turnover frequency (TOF) on $Ir_{Subnano}/MgAl_2O_4$. O₂ partial pressure was kept at 10 kPa, CO partial pressure was measured at 1 kPa. Measured between 143 - 160 °C.

q:= 1.54 |e| *q*:= 1.59 |e|

Figure S11. DFT optimized structures representing various levels of CO coverage: 0, 4, 8, and 9 COs. 9 CO is treated as full coverage. ΔE_{ads} is the average binding energy of the COs on the structure and q is the average Bader charge for the structures.

Figure S12. Examples of structures used to calculate the initial dissociative binding energy of O_2 on the Ir_4 cluster.

Figure S13. CO (a) and O₂ (b) calorimetry of $Ir_{Subnano}/MgAl_2O_4$ and the $Ir_{NP}/MgAl_2O_4$ (1 wt.%). Measured at 30 °C for both CO and O₂ calorimetry. Differential heat (kJ mol⁻¹) in (a) and (b) is normalized by mol of CO and O₂ adsorbed, respectively. The coverage of 1 is defined as the point when the heat reached ~40 kJ/mol.

Figure S14. CO and O₂ calorimetry of three Ir catalysts with different particle sizes. Ir_{NP}/γ -Al₂O₃ serves as a Ir standard with larger particle size. Representative TEM images of Ir nanoparticle in Ir_{NP}/γ -Al₂O₃ with average size 5-12 nm is shown in Fig. S20. Differential heat (kJ mol⁻¹) is normalized with per mol of CO and O₂ adsorbed, respectively. The coverage of 1 is defined as the point when the heat reached ~40 kJ/mol.

Figure S15. CO (a) and O₂ calorimetry of $Ir_{Subnano}/MgAl_2O_4$ repeated on two different batches. Measured at 30 °C for both CO and O₂ calorimetry. Mol of CO in (a) and mol of O in (b) are normalized with mol of surface Ir of the catalyst obtained with CO chemisorption. Differential heat (kJ mol⁻¹) is normalized with per mol of CO and O₂ adsorbed, respectively. The coverage of 1 is defined as the point when the heat reached ~40 kJ/mol.

Figure S16. Mass spectrometry results of the gas concentration from the reactor effluent at 30 °C during EXAFS experiment on (a) Ir_{Subnano}/MgAl₂O₄ (b) Ir_{Subnano_Ir4}/MgAl₂O₄. (a) Flowed 1 kPa and then 4 kPa CO, 4 kPa O₂, and 1 kPa CO in sequence on Ir_{Subnano}/MgAl₂O₄. (b) Flowed 1 kPa CO, 4 kPa O₂, and 1 kPa CO in sequence on Ir_{Subnano Ir4}/MgAl₂O₄.

Figure S17. *In-situ* DRIFTS spectra characterizing $Ir_{Subnano}/MgAl_2O_4$ during O_2 (1 kPa) flow at room temperature after pretreatment and CO chemisorption at room temperature. Spectra was collected every 1 min.

Figure S18. Ir L₃-edge X-ray absorption spectroscopy of Ir_{Subnano}/MgAl₂O₄ under H₂/CO/O₂ flow at room temperature. (a) XANES of Ir_{Subnano}/MgAl₂O₄ after H₂ pretreatment (20 kPa) and measured at room temperature, and then flow CO (1 kPa) at room temperature followed by O₂ (1kPa) at room temperature. (b) EXAFS magnitude of the Fourier transformed k²-weighted χ (k) data measured on Ir_{Subnano}/MgAl₂O₄ after H₂ pretreatment (20 kPa) and measured at room temperature followed by O₂ (1kPa) at room temperature followed by O₂ (1kPa) at room temperature followed by O₂ (1kPa) at room temperature. $\Delta k = 2.6-12.5 \text{ Å}^{-1}$. (c) k-space data measured on Ir_{Subnano}/MgAl₂O₄ after H₂ pretreatment (20 kPa) and measured (20 kPa) and measured at room temperature. $\Delta k = 2.6-12.5 \text{ Å}^{-1}$. (c) k-space data measured on Ir_{Subnano}/MgAl₂O₄ after H₂ pretreatment (20 kPa) at room temperature. (20 kPa) and measured at room temperature.

Figure S19. HAADF-STEM images of the Ir_{Subnano_Ir4}/MgAl₂O₄ before and after the reaction. Histograms were obtained by measuring Ir clusters from multiple images.

Figure S20. HERFD-XANES at Ir L₃-edge characterizing Ir_{Subnano}/MgAl₂O₄, Ir_{Subnano_Ir4}/MgAl₂O₄ and the Ir₄(CO)₁₂ standard. Ir_{Subnano}/MgAl₂O₄ and Ir_{Subnano_Ir4}/MgAl₂O₄ represent MgAl₂O₄ supported Ir subnanometer clusters with different size distributions. See Table S1 for size distribution. (a) HERFD-XANES spectra of Ir_{Subnano}/MgAl₂O₄ after H₂ pretreatment and measured at room temperature (black), flowed CO (1 kPa) at room temperature (red), flowed O₂ (1 kPa) at room temperature (blue), and then flowed CO (1 kPa) at room temperature (orange). (b) HERFD-XANES spectra of Ir_{Subnano}/MgAl₂O₄ after H₂ pretreatment (black), flowed CO (1 kPa) at room temperature (orange). (c) HERFD-XANES spectra of Ir_{Subnano}/MgAl₂O₄ after the first CO flow at room temperature as shown in b, and the Ir_{NP}/ γ -Al₂O₃

sample with the average particle size between 5-8 nm. (d) HERFD-XANES spectra of $Ir_{Subnano_Ir4}/MgAl_2O_4$ after the first CO flow at room temperature as shown in b, and $Ir_4(CO)_{12}$ standard.

Figure S21. (a) Most stable Ir_4 surface species on MgAl₂O₄ (111) before changes to surface termination were considered. Dark blue represents Ir. (b) Optimized surface structure for MgAl₂O₄ (111)^{2, 3} before the addition of Ir_4 . The light blue Os in (b) were removed after the addition of the Ir_4 cluster (cluster not shown in (b) for clarity) as the Ir_4 cluster decreased the oxygen vacancy formation energy considerably (220 to 174 kJ/mol). The Os were chosen as their oxygen vacancy formation energy was below 1 eV. The surface energy was recalculated to arrive at the state used for the CO addition (Figure S9a).

Figure S22. Representative TEM images of the Ir_{NP}/γ -Al₂O₃ sample before and after the reaction. Histogram was obtained by measuring nanoparticles from multiple images.

Derivation of the rate equation

Here we assume that the $Ir(CO)^*$ dominates the Ir clusters and O^* dominates the interfacial support sites Steps:

$$CO_{(g)} + Ir^* \stackrel{k_1}{\leftrightarrow} Ir(CO)^*$$

$$O_{2(g)} + \# \stackrel{k_2}{\leftrightarrow} O_2^{\#}$$

$$Ir(CO)^* + O_2^{\#} \stackrel{k_3}{\rightarrow} CO_{2(g)} + Ir^* + O^{\#}$$

$$Ir(CO)^* + O^{\#} \stackrel{k_4}{\rightarrow} CO_{2(g)} + Ir^* + \#$$

The equations:

$$[Ir(CO)^*] + [Ir^*] = 1$$
$$[O_2^#] + [O^#] + [#] = 1$$

$$\frac{\partial [Ir(CO)^*]}{\partial t} = k_1 P_{CO}[Ir^*] - k_{-1}[Ir(CO)^*] - k_3[Ir(CO)^*][O_2^{\#}] - k_4[Ir(CO)^*][O^{\#}] = 0$$
$$\frac{\partial [O_2^{\#}]}{\partial t} = k_2 P_{O_2}[\#] - k_{-2}[O_2^{\#}] - k_3[Ir(CO)^*][O_2^{\#}] = 0$$
$$\frac{\partial [O^{\#}]}{\partial t} = k_3[Ir(CO)^*][O_2^{\#}] - k_4[Ir(CO)^*][O^{\#}] = 0$$
$$rate = k_4[Ir(CO)^*][O^{\#}]$$

We assume that the surface is fully covered by CO thus $[Ir(CO)^*] = 1$. Note that this assumption means we have no need for the $\frac{\partial [Ir(CO)^*]}{\partial t}$ term. Plugging in the Ir site balance:

$$[Ir(CO)^*] + [Ir^*] = 1$$

 $[Ir(CO)^*] = 1$

$$[O_2^{\#}] + [O^{\#}] + [\#] = 1$$

$$k_2 P_{O_2}[\#] - k_{-2}[O_2^{\#}] - k_3[O_2^{\#}] = 0$$
$$k_3[O_2^{\#}] - k_4[O^{\#}] = 0$$
$$rate = k_4[O^{\#}]$$

We also assume that the surface vacancy site is dominated by O^* .

$$[O_2^{\#}] + [O^{\#}] + [\#] = 1$$

 $[O^{\#}] + [\#] = 1$

Solving for $[O_2^{\#}]$ and plugging it in:

$$k_3[O_2^{\#}] - k_4[O^{\#}] = 0$$
$$[O_2^{\#}] = \frac{k_4}{k_3}[O^{\#}]$$

$$[O^{\#}] + [\#] = 1$$

$$k_2 P_{O_2}[\#] - \frac{k_{-2}k_4}{k_3}[O^{\#}] - k_4[O^{\#}] = 0$$

$$rate = k_4[O^{\#}]$$

Solving for $[O^{\#}]$ and plugging it in:

$$k_2 P_{O_2}[\#] - \frac{k_{-2}k_4}{k_3}[O^{\#}] - k_4[O^{\#}] = 0$$
$$[O^{\#}] = \frac{k_2 P_{O_2}}{\frac{k_{-2}k_4}{k_3} + k_4}[\#]$$

$$\frac{k_2 P_{O_2}}{\frac{k_{-2}k_4}{k_3} + k_4} [\#] + [\#] = 1$$

$$rate = \frac{k_2 P_{O_2}}{\frac{k_{-2}}{k_3} + 1} [\#]$$

Solving the surface site balance and plugging in:

$$\frac{k_2 P_{O_2}}{\frac{k_{-2}k_4}{k_3} + k_4} [\#] + [\#] = 1$$

$$[\#] = \frac{1}{1 + \frac{k_2 P_{O_2}}{\frac{k_{-2} k_4}{k_3} + k_4}}$$

$$rate = \frac{k_2 P_{O_2}}{\frac{k_{-2}}{k_3} + 1} \left(\frac{1}{1 + \frac{k_2 P_{O_2}}{\frac{k_{-2} k_4}{k_3} + k_4}} \right)$$

$$rate = \frac{\frac{\frac{k_2 P_{O_2}}{k_2}}{\frac{k_{-2}}{k_3} + 1}}{1 + \frac{k_2 P_{O_2}}{\frac{k_{-2} k_4}{k_3} + k_4}}$$

Simplifying the fractions:

$$rate = \frac{k_2 k_3 k_4 P_{O_2}}{k_4 (k_{-2} + k_3) + k_2 k_3 P_{O_2}}$$

This gives two regimes a positive order one ([*] dominant) and zero order ($[0^*]$ dominant).

zero order ([0^{*}] dominant,
$$\frac{k_2 P_{O_2}}{\frac{k_- 2k_4}{k_3} + k_4} \gg 1$$
) positive order ([*] dominant, $\frac{k_2 P_{O_2}}{\frac{k_- 2k_4}{k_3} + k_4} \ll 1$)
 $rate = \frac{\frac{k_2 P_{O_2}}{k_3}}{1 + \frac{k_2 P_{O_2}}{\frac{k_- 2k_4}{k_3} + k_4}}$
 $rate = \frac{\frac{k_2 P_{O_2}}{k_3}}{\frac{k_2 P_{O_2}}{\frac{k_- 2k_4}{k_3} + k_4}}$
 $rate = \frac{\frac{k_2 P_{O_2}}{\frac{k_- 2k_4}{k_3} + k_4}}{1 + \frac{k_2 P_{O_2}}{\frac{k_- 2k_4}{k_3} + k_4}}$
 $rate = k_4$
 $rate = \frac{k_2 k_3}{k_2 P_{O_2}}$

If the system is half covered:

$$[O^*] = [*]$$
$$\frac{k_2 P_{O_2}}{\frac{k_{-2}k_4}{k_3} + k_4} = 1$$

$$O_2 \ order = \frac{\partial \ln(rate)}{\partial \ln P_{O_2}} = \frac{P_{O_2}}{rate} \frac{\partial(rate)}{\partial P_{O_2}}$$
$$= \frac{P_{O_2}}{\frac{k_2 k_3 k_4 P_{O_2}}{k_4 (k_{-2} + k_3) + k_2 k_3 P_{O_2}}} \frac{\partial}{\partial P_{O_2}} \left(\frac{k_2 k_3 k_4 P_{O_2}}{k_4 (k_{-2} + k_3) + k_2 k_3 P_{O_2}}\right)$$

$$=\frac{\left(k_{4}(k_{-2}+k_{3})+k_{2}k_{3}P_{O_{2}}\right)}{\left(k_{4}(k_{-2}+k_{3})+k_{2}k_{3}P_{O_{2}}\right)^{2}}\left(k_{4}(k_{-2}+k_{3})+k_{2}k_{3}P_{O_{2}}-k_{2}k_{3}P_{O_{2}}\right)$$

$$=\frac{k_4(k_{-2}+k_3)}{k_4(k_{-2}+k_3)+k_2k_3P_{O_2}}$$

Applying the half-covered condition:

$$\frac{k_2 P_{O_2}}{\frac{k_{-2} k_4}{k_3} + k_4} = 1$$
$$k_2 k_3 P_{O_2} = k_4 (k_{-2} + k_3)$$

$$O_2 order = \frac{k_4(k_{-2} + k_3)}{k_4(k_{-2} + k_3) + k_4(k_{-2} + k_3)} = \frac{1}{2}$$

References

- 1. Y. Lu, C. Kuo, L. Kovarik, A. S. Hoffman, A. Boubnov, D. M. Driscoll, J. R. Morris, S. R. Bare and A. M. Karim, *J. Catal.*, 2019, **378**, 121-130.
- Y. Lu, J. Wang, L. Yu, L. Kovarik, X. Zhang, A. S. Hoffman, A. Gallo, S. R. Bare, D. Sokaras, T. Kroll, V. Dagle, H. Xin and A. M. Karim, *Nat. Catal.*, 2019, 2, 149-156.
- 3. Q. X. Cai, J. G. Wang, Y. Wang and D. H. Mei, J. Phys. Chem. C, 2016, 120, 19087-19096.