Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Intercalating cobalt cation to Co₉S₈ interlayer for highly efficient and

stable electrocatalytic hydrogen evolution

Bin Tian^a, Wojciech Kolodziejczyk^a, Julia Saloni^a, Pohlee Cheah^a, Jing Qu^a, Fengxiang Han^a, Dongmei Cao^b, Xianchun Zhu^a, Yongfeng Zhao^a, * ^aDepartment of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA ^bMaterial Characterization Center, Louisiana State University, Baton Rouge,

LA 70803, USA

Correspondence should be addressed to Yongfeng Zhao: yongfeng.zhao@jsums.edu

Figure S1. XRD patterns of pure Co_9S_8 and $Co^{2+}-Co_9S_8$, the inset is the enlarged peaks

in the range from 20 to 40°.

Figure S2. (a) The HRTEM image of $Co^{2+}-Co_9S_8$ and (b) AFM image of exfoliated $Co^{2+}-Co_9S_8$ sample.

Figure S3. The TEM selected area electron diffraction of $Co^{2+}-Co_9S_8$ catalysts.

Figure S4. (a) The SEM image of $Co^{2+}-Co_9S_8$. (b) and (c) The SEM EDS elemental analysis of $Co^{2+}-Co_9S_8$.

Figure S5. The FT-IR spectra of $Co(OH)_2$, CoS_2 , pure Co_9S_8 and $Co^{2+}-Co_9S_8$

catalysts.

Figure S6. The Raman spectrum of $Co^{2+}-Co_9S_8$ sample, the excited wavelength is 532 nm.

Figure S7. (a) The AFM image of $Co^{2+}-Co_9S_8$, (b) the corresponding size value.

Figure S8. The XPS survey spectra of Co_9S_8 and $Co^{2+}-Co_9S_8$ catalysts.

Figure S9. The XPS P 2p spectra of Co²⁺-Co₉S₈ catalysts.

Figure S10. (a) The XRD patterns of $Co^{2+}-Co_9S_8$ samples with different amount of starting materials. (b) The polarization curves of $Co^{2+}-Co_9S_8$ catalysts different amount of starting materials.

Figure S11. The Raman spectra of $Co^{2+}-Co_9S_8$ catalyst of initial and after reaction.

Figure S12. The comparison of high-resolution XPS spectra, including (a) Co 2p and (b) S 2p spectra between initial and after reaction of Co²⁺-Co₉S₈ catalyst.

Figure S13. Electrochemical double-layer capacitance measurements. (a) and (b) Electrochemical cyclic voltammogram of as-grown catalysts at different potential scanning rates. The scan rates are 10, 20, 50, 100 and 200 mV s⁻¹. (c) Linear fitting of the capacitive currents of the catalysts *vs.* scan rates.

Figure S14. The calculated free-energy diagram for HER based on the pure Co_9S_8 and $Co^{2+}-Co_9S_8$ systems.

System	Condition (H ₂ SO ₄)	Loading amount (mg cm ⁻²)	$\eta_{j=10 mA cm^{-2}}$ (mV vs. RHE)	Tafel Slop (mV dec ⁻¹)	Ref.
Co ₉ S ₈ /NSG-220	0.5 M	0.38	-247	97	S 1
Co ₉ S ₈ @MoS ₂ /CNFs	0.5 M	0.21	-190	110	S2
NSCDs/CoS	0.5 M	0.25	-265	56	S3
CoS ₂ /RGO-CNT	0.5 M	1.15	-142	51	S4
CoMoNiS-NF-31	0.5 M	1.86	-103	55	S5
Co ₉ S ₈ /NC@MoS ₂	0.5 M	0.28	-117	68.8	S6
NiS-Ni ₉ S ₈ -NiSe-NR	0.5 M	0.25	-120	85.2	S7
Ni ₄₃ Au ₅₇ nanoparticles/carb	0.5 M	0.20	-200	43	S8
HNDCM-Co/CoP	0.5 M	N/A	-138	66	S9
CoP/NPC/TF	0.5 M	N/A	-91	54	S10
Co ²⁺ -Co ₉ S ₈	0.5 M	0.56	-86	115.9	This work

Table S1. The electrocatalytic HER performance comparison between our work and other literatures.

Samples	BET Surface Area (m²·g ⁻¹)	Pore Volume (cm ³ ·g ⁻¹)
$\mathrm{Co}_9\mathrm{S}_8$	55.4	0.06
Co ²⁺ -Co ₉ S ₈	43.4	0.22

Table S2. The BET of pristine Co_9S_8 and $Co^{2+}-Co_9S_8$ samples.

Table S3. The calculated absorption energy for H and Gibbs free-energy for HER based on the pure Co_9S_8 and $Co^{2+}-Co_9S_8$ systems

Samples	$\Delta E_H (eV)$	$\Delta G_H(eV)$
Co ₉ S ₈	0.12	0.36
Co ²⁺ -Co ₉ S ₈	-0.48	-0.24

References

- [S1] L. Wang, X. Duan, X. Liu, J. Gu, R. Si, Y. Qiu, Y. Qiu, D. Shi, F. Chen, X. Sun, Adv. Energy Mater. 2020, 10, 1903137.
- [S2] H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, *Adv. Mater.* 2015, 27, 4752-4759.
- [S3] L. Wang, X. Wu, S. Guo, M. Han, Y. Zhou, Y. Sun, H. Huang, Y. Liu, Z. Kang, J. Mater. Chem. A 2017, 5, 2717-2723.
- [S4] S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Cheng, Q. Yan, J. Chen, S. Ramakrishna, Angew. Chem. Int. Ed. 2014, 126, 12802-12807.
- [S5] Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao,G. Sun, J. Am. Chem. Soc. 2019, 141, 10417-10430.

- [S6] H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Shao, L. Hou, ACS Appl. Mater. Interf. 2017, 9, 28394-28405.
- [S7] H. Meng, W. Zhang, Z. Ma, F. Zhang, B. Tang, J. Li, X. Wang, ACS Appl. Mater. Interf. 2018, 10, 2430-2441.
- [S8] H. Lv, Z. Xi, Z. Chen, S. Guo, Y. Yu, W. Zhu, Q. Li, X. Zhang, M. Pan, G. Lu, J. Am. Chem. Soc. 2015, 137, 5859-5862.
- [S9] H. Wang, S. Min, Q. Wang, D. Li, G. Casillas, C. Ma, Y. Li, Z. Liu, L.-J. Li, J. Yuan, ACS nano 2017, 11, 4358-4364.
- [S10] X. Huang, X. Xu, C. Li, D. Wu, D. Cheng, D. Cao, *Adv. Energy Mater.* 2019, 9, 1803970.