Machine learning and molecular dynamics simulations assisted evolutionary design and discovery pipeline to screen the efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency

Asif Mahmood^a, Ahmad Irfan^b and Jin-Liang Wang*^a

^aKey Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

^bDepartment of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

E-mail: jinlwang@bit.edu.cn

Figure S1. Distribution of experimental efficiencies of PBT7-Th-based OSCs in the data set.

Major categories of descriptors

The descriptors are the languages that scientists use to communicate with machine learning models. Descriptors along the target property are used as input to trained machine models. Our studied materials are organic molecules. The molecular descriptors are suitable for machine leaning. Molecular descriptors are thousands in numbers. The major categories are given below:

Autocorrelation descriptors

Basak descriptors

BCUT descriptors

Burden descriptors

Connectivity descriptors

Constitutional descriptors

E-state descriptors

Kappa descriptors

Molecular property descriptors

Quantum chemical descriptors

Topological descriptors

CPSA descriptors

RDF descriptors

Geometrical descriptors

WHIM descriptors

Autocorrelation (2D and 3D) descriptors

Constitutional indices

Ring descriptors

matrix-based descriptors (2D and 3D)

MoRSE descriptors

GETAWAY descriptors

These categories also have sub categories.

Baseline modelling

A baseline is a method that uses heuristics, simple summary statistics, randomness, or machine learning to create predictions for a dataset. Predictions from baseline modelling are used to measure the baseline performance and used as metric to compare the performance of other machine learning algorithms. The baseline modelling is performed using Zero Rule algorithm in Weka. The results are given in Table S1 and S2. 3, 5, 10 and 20 fold cross-validation is used. Cross-validation has not shown strong effect on mean absolute error (MAE) and root mean square error (RMSE).

Target	PCE	HOMO	LUMO	$\lambda_{\max(s)}$	$\lambda_{max(f)}$
property	(%)	(eV)	(eV)	(nm)	(nm)
3-fold	2.528	0.237	0.221	79	87
5-fold	2.532	0.237	0.221	79	87
10-fold	2.535	0.237	0.221	79	87
20-fold	2.531	0.237	0.221	79	87

Table S1. Mean absolute error (MAE) of baseline model for various target properties.

Table S2. Root mean square error (RMSE) of baseline model for various target properties.

Target	PCE	HOMO	LUMO	$\lambda_{\max(s)}$	$\lambda_{max(f)}$
property	(%)	(eV)	(eV)	(nm)	(nm)
3-fold	3.030	0.300	0.288	99	109
5-fold	3.036	0.300	0.288	99	109
10-fold	3.039	0.300	0.288	99	109
20-fold	3.036	0.300	0.288	99	109

Table S3. Descriptors and their correlation between them and PCE.

No.	Name	Category	Description	Correlation
				with PCE
1	ATSC6s	2D	Centred Broto-Moreau	+0.576
		autocorrelations	autocorrelation of lag 6 weighted by	
			I-state	
2	MATS6s	2D	Moran autocorrelation of lag 6	+0.544
		autocorrelations	weighted by I-state	
3	RDF040m	RDF descriptor	Radial distribution function-040/	+0.540
			weighted by relative mass	
4	G(OF)	3D Atom Pairs	sum of geometrical distances	+0.521
			between OF	
5	MDEC-34	Topological	Molecular distance edge between all	10.505
		descriptors	tertiary and quaternary carbons	+0.303
6	VCH-6	Connectivity	Valence chain, order 6	+0.501
		descriptors		+0.301

Figure S2. Pearson correlation between experimental PCE and predicted PCE calculated using linear regression (LR) and support vector machine (SVM)

Table S4. Root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R^2) and Pearson correlation coefficient (r) of various machine learning models for the prediction of PCE.

Model		RMSE (%)	MAE (%)	R ²	r
k-nearest	Training set*	1.93	1.54	0.60	0.77
neighbor	Test set	1.97	1.56	0.57	0.76
Linear	Training set*	2.22	1.81	0.46	0.68
Regression	Test set	1.88	1.47	0.60	0.78
Random	Training set*	1.19	0.91	0.84	0.93
Forest	Test set	1.12	0.87	0.86	0.93
Support vector machine	Training set*	2.10	1.68	0.52	0.72
	Test set	1.92	1.47	0.59	0.78

*Cross-validation = (3-fold)

Table S5. Dese	criptors and	their cor	relation b	between	them	and	HOM	[O.
----------------	--------------	-----------	------------	---------	------	-----	-----	-----

No.	Name	Category	Description	Correlation
				with HOMO
1	SM1_Dzs	Topological	Spectral moment of order 1 from	+0.502
		descriptors	Barysz matrix / weighted by I-	
			state	
2	ETA_dAlpha_B	Topological	A measure of count of hydrogen	+0.474
		descriptors	bond acceptor atoms and/or	

			polar surface area	
3	RCI	Ring	ring complexity index	+0.471
		descriptors		
4	J_D/Dt	2D matrix-	Balaban-like index from	+0.434
		based	distance/detour matrix	
		descriptors		
5	SpMAD_EA(ri)	Edge	spectral mean absolute deviation	
		adjacency	from edge adjacency mat.	+0.426
		indices	weighted by resonance integral	
6	Mor04v	3D-MoRSE	signal 04 / weighted by van der	10.425
		descriptors	Waals volume	± 0.423
7	SpMAD_AEA(dm)	Edge	spectral mean absolute deviation	
		adjacency	from augmented edge adjacency	+0.417
		indices	mat. weighted by dipole moment	

Table S6. Descriptors and their correlation between them and LUMO.

No.	Name	Category	Description	Correlation with LUMO
1	SpMax5_Bh(s)	Burden eigenvalues	largest eigenvalue n. 5 of Burden matrix weighted by I- state	+0.491
2	SpMAD_AEA(dm)	Edge adjacency indices	spectral mean absolute deviation from augmented edge adjacency mat. weighted by dipole moment	+0.473
3	Eig07_AEA(dm)	Edge adjacency indices	eigenvalue n. 7 from augmented edge adjacency mat. weighted by dipole momen	+0.472
4	R1s	GETAWAY descriptors	R autocorrelation of lag 1 / weighted by I-state	+0.463
5	SM5_B(s)	2D matrix-based descriptors	spectral moment of order 5 from Burden matrix weighted by I-State	+0.462
6	AVS_B(s)	2D matrix-based descriptors	average vertex sum from Burden matrix weighted by I- State	+0.457
7	P_VSA_s_6	P_VSA-like descriptors	P_VSA-like on I-state, bin 6	+0.449
8	RPSA	CPSADescriptor	TPSA / total molecular surface area	+0.443
9	P_VSA_LogP_5	P_VSA-like descriptors	P_VSA-like on LogP, bin 5	+0.441

Figure S3. Correlation between experimental and predicted energy levels using k-nearest neighbor (k-NN)

Table S7. Root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R^2) and Pearson correlation coefficient (r) of k-nearest neighbor and Random Forest models for the prediction of HOMO and LUMO.

Energy level	Model		RMSE (eV)	MAE (eV)	R ²	r
	k-nearest	Training set*	0.20	0.15	0.54	0.73
UOMO	neighbor	Test set	0.21	0.16	0.55	0.74
HOMO	Random Forest	Training set*	0.11	0.08	0.86	0.93
		Test set	0.12	0.09	0.84	0.92
	k-nearest neighbor	Training set*	0.20	0.15	0.53	0.73
		Test set	0.19	0.14	0.54	0.73
LUMO	Random Forest	Training set*	0.11	0.08	0.85	0.93
		Test set	0.11	0.07	0.85	0.93

*Cross-validation = (10-fold)

Figure S4. Heatmap of correlation between various parameters of OSCs: short circuit current (Jsc), power conversion efficiency (PCE), absorption maxima of UV/visible spectra determined in solution ($\lambda_{max(s)}$), absorption maxima of UV/visible spectra determined in solution ($\lambda_{max(s)}$) and difference between $\lambda_{max(s)}$ and $\lambda_{max(f)}$ (Δ_{fs})

No.	Name	Category	Description	Correlation with $\lambda_{max(a)}$
1	nR08	Ring descriptors	number of 8-membered rings	+0.626
2	SpDiam_AEA(ri)	Edge adjacency indices	spectral diameter from augmented edge adjacency mat. weighted by resonance integral	+0.579
4	C-017	Atom-centred fragments	=CR2	+0.510
5	D/Dtr08	Ring descriptors	distance/detour ring index of order 8	+0.496
6	ATSC5s	2D autocorrelations	Centred Broto-Moreau autocorrelation of lag 5 weighted by I-state	+0.494
7	MDEC-34	Topological descriptors	Molecular distance edge between all tertiary and quaternary carbons	+0.481
8	SpMax_A	2D matrix-based descriptors	leading eigenvalue from adjacency matrix (Lovasz-	+0.479

Table S8. Descriptors and their correlation between them and $\lambda_{max(s)}$.

			Pelikan index)	
9	JGI3	2D	mean topological charge index	10.462
		autocorrelations	of order 3	+0.402
10	ATSC6s	2D	Centred Broto-Moreau	
		autocorrelations	autocorrelation of lag 6	+0.460
			weighted by I-state	

Table S9. Descriptors and their correlation between them and $\lambda_{max(f)}$.

No.	Name	Category	Description	Correlation with $\lambda_{max}(0)$
1	nR08	Ring descriptors	number of 8-membered rings	+0.586
2	SpDiam_AEA(ri)	Edge adjacency indices	spectral diameter from augmented edge adjacency mat. weighted by resonance integral	+0.548
3	C-017	Atom-centred fragments	=CR2	+0.501
4	IC1	Information indices	Information Content index (neighborhood symmetry of 1- order)	+0.479
5	CATS2D_06_AA	CATS 2D	CATS2D Acceptor-Acceptor at lag 06	+0.471
6	JGI3	2D autocorrelations	mean topological charge index of order 3	+0.460
7	ATSC5s	2D autocorrelations	Centred Broto-Moreau autocorrelation of lag 5 weighted by I-state	+0.458
8	ATSC6s	2D autocorrelations	Centred Broto-Moreau autocorrelation of lag 6 weighted by I-state	+0.435

Table S10. Root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R^2) and Pearson correlation coefficient (r) of k-nearest neighbor and Random Forest models for the prediction of absorption maxima in solution and film.

	Model		RMSE (nm)	MAE (nm)	R ²	r
solution	k-nearest neighbor	Training set*	55.48	40.11	0.68	0.83
		Test set	57.1	42.14	0.68	0.83
	Random Forest	Training set*	27.88	18.78	0.92	0.96
		Test set	33.33	22.33	0.90	0.96

	k-nearest neighbor	Training set*	73.99	56.85	0.53	0.73
Eilm		Test set	67.12	52.16	0.64	0.83
Film	Random Forest	Training set*	32.90	24.01	0.91	0.96
		Test set	35.55	25.78	0.90	0.96

*Cross-validation = (3-fold)

Figure S5. Potential candidates of new SMAs for PBT7-Th: SMAs based OSCs.

Table S1	. Energy	level,	absorption	maxima,	PCE an	d Florgy	-Huggins	parameter	(χ)	for m	ore
than 100	potential o	candid	lates.								

No.	HOMO	LUMO	$\lambda_{\max(s)}$	$\lambda_{\max(f)}$	PCE (%)	χ
	(eV)	(eV)	(nm)	(nm)		
1	-5.52	-3.86	653	731	13.17	-31.81
2	-5.45	-3.78	698	793	14.57	42.40
3	-5.43	-3.82	698	793	14.24	-10.01
4	-5.44	-3.89	698	793	13.66	3.20
5	-5.26	-3.59	692	654	14.57	-9.01
6	-5.22	-3.67	671	749	13.01	-27.03
7	-5.25	-3.56	671	737	13.78	5.30
8	-5.24	-3.68	671	740	14.75	37.01
9	-5.44	-3.85	725	724	13.81	23.07
10	-5.46	-3.90	737	765	14.27	23.40
11	-5.46	-3.89	732	765	13.80	10.07
12	-5.46	-3.89	732	777	14.27	13.13
13	-5.46	-3.82	725	748	14.09	32.24
14	-5.39	-3.94	701	739	14.52	19.97
15	-5.40	-3.97	701	739	14.23	14.17
16	-5.53	-3.86	701	739	14.94	8.918
17	-5.58	-3.76	694	748	15.26	38.07
18	-5.53	-3.86	725	775	13.94	32.60
19	-5.54	-3.96	716	775	13.94	-8.84
20	-5.55	-4.01	733	777	13.50	-14.11
21	-5.56	-3.97	731	778	13.64	-12.38
22	-5.49	-3.65	673	646	14.32	-7.63
23	-5.45	-3.66	643	653	15.51	26.58
24	-5.36	-3.69	629	733	13.17	23.09

25	-5.51	-3.99	790	789	13.09	3.98
26	-5.48	-3.98	790	795	13.09	23.43
27	-5.54	-3.95	790	785	13.03	13.17
28	-5.53	-4.02	790	785	13.30	23.00
29	-5.58	-4.02	790	785	13.13	40.18
30	-5.56	-3.91	790	776	13.28	23.74
31	-5.53	-3.91	787	776	13.28	24.56
32	-5.57	-3.92	785	776	13.28	9.48
33	-5.52	-3.90	785	776	13.28	16.97
34	-5.54	-3.76	672	675	13.81	6.63
35	-5.37	-3.71	667	771	13.35	14.36
36	-5.38	-4.04	679	775	14.80	35.65
37	-5.38	-3.84	670	775	14.80	25.28
38	-5.42	-3.57	690	634	14.96	15.99
39	-5.67	-3.95	740	795	13.52	22.23
40	-5.54	-3.99	732	795	13.52	29.42
41	-5.82	-3.90	732	795	13.66	19.17
42	-5.54	-3.97	757	801	13.52	-13.87
43	-5.60	-3.91	727	777	14.07	16.87
44	-5.60	-3.85	577	777	13.52	-11.26
45	-5.73	-3.87	727	768	13.10	26.31
46	-5.39	-3.94	751	740	15.24	3.99
47	-5.43	-3.88	745	729	15.24	24.91
48	-5.48	-4.02	722	723	13.43	-3.29
49	-5.49	-3.83	754	739	15.49	-0.12
50	-5.53	-3.74	756	751	12.86	12.81
51	-5.48	-3.83	756	736	15.53	51.60
52	-5.56	-4.00	723	679	13.52	19.35
53	-5.45	-3.84	701	753	13.92	75.84
54	-5.51	-3.90	702	759	13.60	53.24
55	-5.64	-3.91	659	760	13.83	28.50
56	-5.73	-3.86	585	605	14.25	5.09
57	-5.53	-3.84	579	592	13.70	-1.39
58	-5.61	-3.83	592	585	13.13	70.46
59	-5.52	-3.82	716	823	13.69	23.15
60	-5.48	-3.81	707	807	14.67	34.57
61	-5.67	-3.72	562	775	13.82	-37.54
62	-5.62	-3.83	733	793	13.48	24.24
63	-5.42	-3.94	731	791	13.70	62.8
64	-5.44	-3.98	730	797	14.09	-4.34
65	-5.42	-3.86	712	801	14.76	40.65
66	-5.37	-3.88	709	773	14.76	-2.30
67	-5.46	-3.93	716	802	14.25	107.50
68	-5.48	-3.96	721	780	14.61	18.34
69	-5.54	-3.81	702	757	13.74	44.74

70	-5.51	-3.89	716	807	13.47	32.21
71	-5.56	-3.81	701	745	13.86	-7.75
72	-5.46	-3.91	703	794	14.30	69.20
73	-5.43	-3.94	612	753	13.00	5.79
74	-5.46	-3.84	594	611	13.43	111.10
75	-5.45	-3.90	605	609	13.46	16.88
76	-5.42	-3.78	655	725	13.05	-3.71
77	-5.43	-3.91	591	599	13.75	28.17
78	-5.52	-3.82	719	766	13.10	4.58
79	-5.47	-3.80	717	723	13.5	-42.57
80	-5.40	-3.79	702	767	14.66	42.03
81	-5.46	-3.95	692	740	13.41	-30.81
82	-5.44	-3.73	578	623	13.25	-11.35
83	-5.48	-3.89	605	616	13.68	13.29
84	-5.46	-3.79	724	724	14.10	-13.75
85	-5.48	-3.93	568	639	14.40	15.50
86	-5.54	-3.82	726	795	13.22	31.29
87	-5.50	-3.82	726	803	13.72	9.38
88	-5.53	-3.87	711	754	13.81	-5.07
89	-5.40	-3.83	699	722	13.76	21.49
90	-5.47	-3.82	569	751	13.33	65.85
91	-5.37	-3.79	583	715	13.95	42.58
92	-5.35	-3.84	594	775	13.89	-29.00
93	-5.48	-3.88	694	793	13.17	-9.53
94	-5.48	-3.88	604	640	13.11	59.89
95	-5.53	-3.83	727	732	13.32	32.62
96	-5.52	-3.80	725	725	14.25	4.46
97	-5.51	-3.95	730	719	14.25	28.47
98	-5.51	-3.91	730	712	13.32	45.17
99	-5.44	-3.86	684	743	14.47	-41.56
100	-5.37	-3.89	502	695	13.63	41.92
101	-5.60	-3.89	572	725	13.51	111.70
102	-5.34	-3.80	487	598	14.06	101.40