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Experimental sections

1. Reagents

A solid phase synthesis method was adopted that used following reagents: 

C6H9O6La·xH2O (M: 245.09, 99.9 %), and IrCl4·xH2O (M: 334.03, Ir 48.0 - 55.0 %) 

were purchased from Aladdin, and LiCl (M: 42.39, 99.0 %), and commercial IrO2 (99.9 

%) were purchased from Macklin

2. Synthesis of materials

In a simple procedure, 1.7 mg of the LiCl, 50.7 mg of the C6H9O6La·xH2O and 33.4 

mg of the IrCl4·xH2O were fully ground in an agate mortar to obtain a uniform solid 

powder. Then, the solid powder was put into a corundum crucible and moved into a 

muffle furnace, and heated to 1200 °C with a heating rate of 2 °C min-1 under the 

ambient air. After annealed for 4 hours, the target products were collected for 

electrochemical testing. In order to investigate the effects of reaction temperature and 

different ratios of lithium to lanthanum on the catalytic performance of the catalyst, a 

series of experiments related to temperature and the ratio of lithium to lanthanum were 

carried out.

3. Materials characterization

The powder X-ray diffraction of the prepared catalysts were analyzed with 

D/Max200, Rigaku diffraction system using Cu-Kα radiation with 2θ range of 10 – 80o. 

The morphology and size of catalysts were characterized by the scanning electron 

microscope (Hitachi S-4800). TEM and HRTEM measurements were performed on the 

JEOL JEM-2100F transmission electron microscope. Thermo Scientific ESCALAB 



250Xi X-ray photoelectron spectrometer was used to measure the XPS spectra. The 

XANES and EXAFS were recorded at room temperature by the BL10c beam line at the 

Pohang Light Source (PLS-II), Korea.

4. Electrocatalytic measurements

The catalytic oxygen evolution reaction performance of the prepared catalysts were 

investigated in a standard three-electrode cell in 0.1 M HClO4 solution. The cell consists 

of a glassy carbon working electrode (GC electrode, 3 mm in diameter), a reversible 

hydrogen reference electrode, and a carbon rod counter electrode. The working 

electrodes were prepared by loading 5 μL of catalyst ink onto glassy carbon (GC) 

electrode. The catalyst ink was prepared by uniformly dispersing 2 mg of catalyst 

IrO2/LiLa2IrO6, 40 μL of 5 wt % Nafion solution (Sigma-Aldrich, 5 wt%) and 0.4 mg 

of XC-72 conductive carbon into a mixture of 100 μL of deionized water and 200 μL 

of anhydrous ethanol by ultrasounding for 30 minutes. The polarization curves were 

measured with a scan rate of 5 mV s-1, and the potential range was 1.0 ‐ 1.65 (V vs 

RHE). All data were obtained with IR (95 %) compensation. The ESI measurements 

were carried out at the open circuit potential in the frequency range of 100 kHz ‐ 0.01 

Hz. The durability tests were conducted by a chronopotentiometry method at a constant 

current density of 10 mA cm-2. In order to improve the electrochemical stability, a 

Titanium mesh (1*1 cm2) with loading of 150 μL catalyst ink was used as the working 

electrode during the durability testing.
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Fig. S2. The XPS survey spectra of the IrO2/LiLa2IrO6 before and after OER testing.



Fig. S3. The high-resolution XPS spectra of the La 3d for the IrO2/LiLa2IrO6 and A-

IrO2/LiLa2IrO6 (A refers to the samples collected after OER testing).
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Fig. S9. The XRD pattern of catalyst prepared with an annealing temperature of 1000 
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Fig. S11. The CV curves recorded at different scan rates for the catalysts prepared with 

different molar ratio of Li to La to determine the double layer capacitance: a) Li: La = 

1 : 1, b) Li: La = 1 : 2, c) Li: La = 1 : 4, d) Li: La = 2 : 1.



Supplementary Table S1. Comparison of the overpotentials at 10 mA cm-2 with 

recently reported OER catalysts in acidic electrolytes.

Catalysts Electrolyte Overpotential (mV) 
at 10 mA cm-2 References

3D Ir superstructures 0.1 M HClO4 270 [1]

Y2-xCaxRu2O7-δ 0.5 M H2SO4 275 [2]

IrO2/LiLa2IrO6 0.1 M HClO4 278 This work

Ru @IrOx 0.05 M H2SO4 282 [3]

Y2-xZnxRu2O7 0.5 M H2SO4 291 [4]

La3IrO7-SLD 0.1 M HClO4 296 [5]

Ir-Ni 0.1 M HClO4 300 [6]

BaIrO3 0.5 M H2SO4 300 [7]

IrCoNi/C 0.1 M HClO4 303 [8]

Pr3IrO7 0.1 M HClO4 305 [9]

IrCu2.3 nanocrystal 0.05 M H2SO4 310 [10]

IrNi-RFs 0.1 M HClO4 314 [11]

Ir/Fe4N 0.5 M H2SO4 316 [12]

SnO2-Sb-IrO2 0.5 M H2SO4 318 [13]

FeNC 0.5 M H2SO4 320 [14]

0.5IrO2-0.5SiO2 0.5 M H2SO4 322 [15]

Ba2YIrO6 0.1 M HClO4 330 [16]

IrNiOx/ATO 0.05 M H2SO4 330 [17]

Ir0.7Co0.3Ox 0.5 M H2SO4 330 [18]

OEEG 0.5 M H2SO4 334 [19]



SrCo0.9Ir0.1O3−δ 0.1 M HClO4 340 [20]

IrOOH 0.1 M HClO4 344 [21]

Cu0.3Ir0.7Oδ 0.1 M HClO4 350 [22]

Ir2SnOx 0.5 M H2SO4 355 [23]

 Ti/IrO2 0.5 M H2SO4 361 [24]

W0.57Ir0.43O3−δ 1 M H2SO4 370 [25]

Ba[3]/CPO 0.5 M H2SO4 385 [26]

CNx 0.1 M HClO4 390 [27]

Sr2FeIrO6 0.1 M HClO4 400 [28]

Sr2Fe0.5Ir0.5O4 0.1 M HClO4 400 [28]

Ir7Au 0.1 M HClO4 410 [29]
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