Multi-walled carbon nanotube supported Manganese Selenide as Highly Active Bifunctional OER and ORR electrocatalyst

Harish Singh^a, McKenzie Marley-Hines^{a,b}, Shatadru Chakravarty^c, Manashi Nath^a*

*Corresponding author email: <u>nathm@mst.edu</u>

Electrodeposition of Pt and RuO₂

The platinum was electrochemically deposited from a solution of $5mM K_2PtCl_6$ and $0.5M H_2SO_4$ at a potential step from 0.8 V to -0.25 V for 5 s and immediately from -0.25 to 0.25 V for 25 s.

Electrodeposition of RuO_2 on GC substrate was carried out from a mixture of $RuCl_3$ (0.452 g) and KCl (2.952 g) in 40 ml of 0.01M HCl by using cyclic voltammetry from 0.015 to 0.915 V (vs. Ag|AgCl) for 100 cycles at a scan rate of 50 mV s⁻¹. Finally heated at 200 °C for 3 h in presence of Air.

Figure S1. (a) Linear sweep voltammetry characterization showing the OER activity of MnSe and MnSe@MWCNT composite. (b) Estimation of overpotentials from reverse sweep of the CV plots.

Figure S2. Cyclic voltammograms measured at different scan rates and corresponding plots of anodic and cathodic currents measured as a function of different scan rates for: (a,b) MnSe (c,d), MnSe@MWCNT.

Figure S3. Chronoamperometry studies of the MnSe and MnSe@MWCNT electrodes at a constant applied potential of 1.55 V and 1.52 V respectively.

Figure S4. Raman spectra of MnSe before and after 12 hr of chronoamperometry studies.

Figure S5. PXRD pattern of MnSe@MWCNT before and after 12 hr of chronoamperometry studies.

Figure S6. SEM images of (a,b) MnSe@MWCNT and (c,d) MnSe before and after 12 hr of chronoamperometry studies.

Figure S7. XPS spectra of MnSe@MWCNT (data collected at same spot where surface Raman spectra collected) after OER chronoamperometry.

Figure S8. RDE linear sweep voltammograms of Pt/GCE catalysts at a different rotating speed.

Figure S10. LSV before and after chronoamperometry studies of Pt/GCE.

OER Catalysts	Electrolytes	Onset potential/V	η @ 10 mA cm ⁻² (mV vs RHE)	Tafel slope mV dec ⁻¹	Reference
α-MnO ₂ -H ₂	0.1 M KOH	1.6	508	213.5	1
MnOx NWs	0.1 M KOH	-	519	106	2
Metal-doped MnO ₂	1 M KOH	-	390	104.4	3
Ni–MnO ₂	1 M KOH	-	330	23.7	4
MnO ₂ /CQD	1 M KOH	1.34	343	43.6	5
α-MnS	1 M KOH	-	292	70	6
α-MnO2/MnOOH	1 M KOH		302	51.3	7
Mn _{0.6} Zn _{0.4} Co ₂ O ₄ /rGO	1 M KOH	1.48	320	80.6	8
MnO _x /OCNT	0.1 M KOH	-	520	105	9
MnFeSe	1 M KOH	-	247	35	10
$Mn_{1.2}Fe_{0.8}O_3$	1 M KOH	-	245	38	11
Co ₁ Mn ₁ NBs	1 M KOH	-	221	39.8	12
Mn _{0.3} (Fe _{0.3} Ni _{0.7}) _{0.5} O _X /	0.1 M KOH	-	330	-	13
MWCNTs-O _x					
Mn-Co-Se/NF	1 M KOH	-	243	62	14
MnSe/NF (drop casted)	1 M KOH	1.46	237*	-	This Work
MnSe/NF	1 M KOH	1.45	230*	-	This Work
(Hydrothermally					
grown)					
MnSe@MWCNT/NF	1 M KOH	1.42	223*	-	This Work
(drop casted)					
MnSe@MWCNT/NF	1 M KOH	1.41	210*	-	This Work
(Hydrothermally					
grown)					
MnSe/CC	1 M KOH	1.49	310	61.43	This Work
MnSe@MWCNT/CC	1 M KOH	1.47	290	54.76	This Work
RuO ₂ /CC	1 M KOH	1.53	380	114.91	This Work

Table S1. Comparison of electrocatalytic parameters of Manganese based catalysts for OER

* η @ 50 mA cm 2 (mV vs RHE); CC-Carbon Cloth; NF-Nickel Foam

Table S2. Comparison of overpotentials of MnSe-based composites and other reported systems at higher current densities.

OER Catalysts	$ \begin{array}{c} \eta @ 10 \text{ mA cm}^{-2} \\ (\text{mV } vs \text{ RHE}) \end{array} $	$ \begin{array}{c} \eta @ 50 \\ mA cm^{-2} \\ (mV vs \\ RHE \end{array} $	$ \begin{array}{c} \eta @ 100 \\ mA cm^{-2} \\ (mV vs \\ RHE \end{array} $	$\begin{array}{c} \eta @ 500 \\ mA cm^{-2} \\ (mV vs \\ RHE \end{array}$	Reference
MnSe@MWCNT/NF	182	210	250	330	This Work
(Hydrothermally					
grown)					
MnSe/NF	220	230	290	380	This Work
(Hydrothermally					
grown)					
MnSe@MWCNT/NF	208	223	270		This Work
(drop casted)					
MnSe@MWCNT/CC	290	390	-	-	This Work
MnSe/CC	310	340	-	-	This Work
MnFeSe/NF	247	279	296	-	10
Co1Mn1 LDH/NF	285	350	390	-	15
Mn-Ni ₂ P-0.053/NF	-	299	330	-	16
CMS/NF	-	-	292	-	17
MnxNi ₂ -xP	196	270	370	-	18
Mn-F/Ni(OH)2-NF	-	337	420	-	19
MnGa ₄ /NF	291	370	402	560	20
Mn ₃ O ₄ /NF	287	310	-	-	21
FeCo(Mn)–O/NF	235	250	280	-	22
Fe, Mn-Ni ₃ S ₂ /NF	-	230	260	-	23
Ni–Co ₃ O ₄ NS\NF	310	-	390	-	24
MnCoP/CC	261	-	460	-	25
Ni ₃ Se ₂ /NF	-	-	315	-	26
Co _{0.75} Ni _{0.25} Se/NF	-	269	290	-	27
Fe–NiSe/NF	-	261	275	290	28
P-Ni ₃ S ₂ /CoFe ₂ O ₄ /NF	-	254	269	_	29
FeCoNiS _x /NF	231	250	280	-	30
Fe7.4%-NiSe/NF		231	245	-	31
Ni ₃ Se ₂ /NF	270	410	570	-	32

ORR Catalysts	Electrolytes	E onset VS. RHE(V	E 1/2 [V vs RHE]	J _L (mA cm ⁻²)	Reference
α -MnO ₂ -H ₂	0.1 M KOH	0.93	0.73	4.70	1
α-MnO ₂ NWs	0.1 M KOH	0.94	0.72	5.48	33
α-MnO ₂ NRs	0.1 M KOH	0.86	0.67	4.40	33
β-MnO2	0.1 M KOH	0.89	0.76	5.75	34
MnO ₂ /NRGO_	0.1 M KOH	0.94	0.8	5.1	35
Urea					
MnO ₂ /C	0.1 M KOH	0.88	0.67	4.52	35
α-MnO ₂ -80	0.1 M KOH	0.92	0.79	5.67	36
MnO	0.1 M KOH	0.82	-	42.8	37
MnS	0.1 M KOH	0.86	-	4.66	37
MnSe	0.1 M KOH	0.91	-	5.82	37
MnS/G	0.1 M KOH	0.83	0.71	3.79	38
Defected Mn ₃ O ₄	0.1 M KOH	0.87	0.65	5	39
$Mn_{0.5}(Fe_{0.3}Ni_{0.7})_{0.5}O_X/M$	0.1 M KOH	0.84	0.81	-	13
WCNTs-O _x					
MnSe	1 M KOH	0.91	0.82	5.1	This Work
MNSe@MWCNT	1 M KOH	0.94	0.86	6.03	This Work
Pt/GCE	1 M KOH	0.92	0.81	3.92	This Work

 Table S3. Comparison of electrocatalytic parameters of Manganese based catalysts for ORR

Table S4. Equivalent Circuit Parameters Obtained from Fitting of EIS Experimental Data

Parameter	MnSe@MWCNT	MnSe
R _f /Ω	6.4	8.5
$R_{\rm ct}/\Omega$	18.6	28.4
CPE catalyst/F	0.8	1.4
Zw	0.76	1.48

Notes and references

- 1 Q. Zhuang, N. Ma, Z. Yin, X. Yang, Z. Yin, J. Gao, Y. Xu, Z. Gao, H. Wang, J. Kang, D. Xiao, J. Li, X. Li and D. Ma, *Adv. Energy Sustain. Res.*, 2021, **2**, 2100030.
- 2 X. F. Luo, J. Wang, Z. S. Liang, S. Z. Chen, Z. L. Liu and C. W. Xu, Int. J. Hydrogen Energy, 2017, 42, 7151–7157.
- 3 Z. Ye, T. Li, G. Ma, Y. Dong and X. Zhou, Adv. Funct. Mater., 2017, 27, 1704083.
- 4 Y. Yang, X. Su, L. Zhang, P. Kerns, L. Achola, V. Hayes, R. Quardokus, S. L. Suib and J. He, *ChemCatChem*, 2019, **11**, 1689– 1700.
- 5 L. Tian, J. Wang, K. Wang, H. Wo, X. Wang, W. Zhuang, T. Li and X. Du, Carbon N. Y., 2019, 143, 457–466.
- 6 R. B. Pujari, G. S. Gund, S. J. Patil, H. S. Park and D.-W. Lee, J. Mater. Chem. A, 2020, 8, 3901–3909.
- Jincan Jia, Lei Li, Xiao Lian, Mingzai Wu, Fangcai Zheng, Li Song, Guangzhi Hu and Helin Niu, Nanoscale, 2021, 13, 11120– 11127.
- 8 A. Rebekah, S. Anantharaj, C. Viswanthan and N. Ponpandian, Int. J. Hydrogen Energy, 2020, 45, 14713–14727.
- 9 Hendrik Antoni, Wei Xia, Justus Masa, Wolfgang Schuhmann and Martin Muhler, *Phys. Chem. Chem. Phys.*, 2017, **19**, 18434–18442.
- 10 M. Sun, R.-T. Gao, X. Liu, R. Gao and L. Wang, J. Mater. Chem. A, 2020, 8, 25298–25305.
- 11 Q. Ma, R. Dong, H. Liu, A. Zhu, L. Qiao, Y. Ma, J. Wang, J. Xie and J. Pan, J. Alloys Compd., 2020, 820, 153438.
- 12 H. Xu, J. Wei, K. Zhang, M. Zhang, C. Liu, J. Guo and Y. Du, J. Mater. Chem. A, 2018, 6, 22697–22704.
- 13 D. M. Morales, M. A. Kazakova, S. Dieckhöfer, A. G. Selyutin, G. V. Golubtsov, W. Schuhmann and J. Masa, *Adv. Funct. Mater.*, 2020, **30**, 1905992.
- 14 G. Mei, H. Liang, B. Wei, H. Shi, F. Ming, X. Xu and Z. Wang, *Electrochim. Acta*, 2018, 290, 82–89.
- 15 Z. Wang, Y. Hu, W. Liu, L. Xu, M. Guan, Y. Zhao, J. Bao and H. Li, *Chem. A Eur. J.*, 2020, **26**, 9382–9388.
- 16 P. Xu, L. Qiu, L. Wei, Y. Liu, D. Yuan, Y. Wang and P. Tsiakaras, Catal. Today, 2020, 355, 815–821.
- 17 J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu and D. Yuan, *Nano-Micro Lett.*, 2018, **10**, 1–10.
- 18 H. Yang, M. Yuan, D. Wang, Z. Sun, H. Li and G. Sun, ACS Appl. Energy Mater., 2021, 4, 8563–8571.
- 19 J. Lv, X. Yang, K. Li, X. Chen, S. Sun, H. Y. Zang, Y. F. Chang, Y. H. Wang and Y. G. Li, *Nanoscale Adv.*, 2019, **1**, 4099–4108.
- P. W. Menezes, C. Walter, J. An, N. Hausmann, R. Beltrµn-Suito, C. Schlesiger, S. Praetz, Y. V Erchenko, A. Ndrei, V. Shevelkov, M. Driess, P. W. Menezes,] C Walter, J. N. Hausmann, R. Beltrµn-Suito, C. Schlesiger, S. Praetz, V. Y. U. Verchenko and A. V. S. Hevelkov, *Angew. Chemie Int. Ed.*, 2019, **58**, 16569–16574.
- 21 M. Q. Yu, Y. H. Li, S. Yang, P. F. Liu, L. F. Pan, L. Zhang and H. G. Yang, J. Mater. Chem. A, 2015, **3**, 14101–14104.
- 22 S.-N. Wu, Y.-F. Qi, Q. Wang, X.-G. Wang, X.-J. Zhao, E.-C. Yang, N Wu, Y.-F. Qi, + Q Wang, X.-G. Wang, X.-J. Zhao and E.-C. Yang, *ChemElectroChem*, 2020, **7**, 684–690.
- 23 J. J. Duan, Z. Han, R. L. Zhang, J. J. Feng, L. Zhang, Q. L. Zhang and A. J. Wang, J. Colloid Interface Sci., 2021, 588, 248–256.
- 24 L. Zeng, K. Zhou, L. Yang, G. Du, L. Liu and W. Zhou, ACS Appl. Energy Mater., 2018, 1, 6279–6287.
- 25 M. Wang, W. Fu, L. Du, Y. Wei, P. Rao, L. Wei, X. Zhao, Y. Wang and S. Sun, Appl. Surf. Sci., 2020, 515, 146059.
- A. Sivanantham and S. Shanmugam, Appl. Catal. B Environ., 2017, 203, 485–493.
- 27 S. Liu, Y. Jiang, M. Yang, M. Zhang, Q. Guo, W. Shen, R. He and M. Li, *Nanoscale*, 2019, **11**, 7959–7966.
- 28 Q. Zhao, D. Zhong, L. Liu, D. Li, G. Hao and J. Li, J. Mater. Chem. A, 2017, 5, 14639–14645.
- 29 J. J. Duan, R. L. Zhang, J. J. Feng, L. Zhang, Q. L. Zhang and A. J. Wang, J. Colloid Interface Sci., 2021, 581, 774–782.
- 30 R. L. Zhang, J. J. Duan, J. J. Feng, L. P. Mei, Q. L. Zhang and A. J. Wang, J. Colloid Interface Sci., 2021, 587, 141–149.

- 31 Z. Zou, X. Wang, J. Huang, Z. Wu and F. Gao, J. Mater. Chem. A, 2019, 7, 2233–2241.
- 32 A. T. Swesi, J. Masud and M. Nath, *Energy Environ. Sci.*, 2016, **9**, 1771–1782.
- 33 K. Lei, L. Cong, X. Fu, F. Cheng and J. Chen, *Inorg. Chem. Front.*, 2016, **3**, 928–933.
- 34 L. Li, X. Feng, Y. Nie, S. Chen, F. Shi, K. Xiong, W. Ding, X. Qi, J. Hu, Z. Wei, L.-J. Wan and M. Xia, ACS Catal., 2015, 5, 4825– 4832.
- 35 B. Chen, H. Miao, R. Hu, M. Yin, X. Wu, S. Sun, Q. Wang, S. Li and J. Yuan, J. Alloys Compd., 2021, 852, 157012.
- B. Lan, X. Zheng, G. Cheng, J. Han, W. Li, M. Sun and L. Yu, *Electrochim. Acta*, 2018, 283, 459–466.
- 37 X. Liu, J. Du, C. Li, X. Han, X. Hu, F. Cheng and J. Chen, J. Mater. Chem. A, 2015, **3**, 3425–3431.
- A. Arunchander, S. G. Peera and A. K. Sahu, *ChemElectroChem*, 2017, 4, 1544–1553.
- 39 Y. C. Zhang, S. Ullah, R. Zhang, L. Pan, X. Zhang and J. J. Zou, Appl. Catal. B Environ., 2020, 277, 119247.