Supporting Information

Modulating heterointerfaces of tungsten incorporated CoSe/Co₃O₄

as highly efficient electrocatalyst for overall water splitting

Ravichandran Balaji^a, Thanh Tuan Nguyen^a, Kempanna Harish^a, Nam Hoon Kim^{a*}, Joong Hee

Lee^{a,b*}

^aAdvanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.

^bCarbon Composite Research Centre, Department of Polymer – Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.

Fig. S1. SEM images (a) Pure Co LDH (b) Pure W LDH (c) Low and (d) high magnification of as-synthesized WCo LDH nanostructure.

Fig. S2. XRD pattern zoomed version of WCoSe/WCo₃O₄ heterostructure.

Fig. S3. XPS full spectra indicates that the elements presence of W, Co, O, and Se in the $WCoSe/WCo_3O_4$ heterostructure.

Fig. S4. (a) LSV performance and (b) Tafel slopes of precursors for OER.

Fig. S5. EIS of as prepared electrocatalysts for OER activities.

Fig. S6. CV curves of OER catalysts with varying scan rates from 10 to 100 mV s⁻¹ (a) WSe₂/WO₂, (b) CoSe/Co₃O₄ (c) RuO₂ and (d) WCoSe/WCo₃O₄ HS electrocatalysts.

Fig. S7. ECSA for WCoSe/WCo₃O₄ HS and other comparative electrocatalysts during OER process.

Fig. S8. (a) Long term stability of WCoSe/WCo₃O₄ HS electrocatalyst at current density of 100 mA cm⁻² for 50 h towards OER activities and (b) LSV curves of WCoSe/WCo₃O₄ HS electrocatalyst after long term stability.

Fig. S9. a) Low and b) high magnification SEM of WCoSe/WCo₃O₄ after OER stability performance.

Fig. S10. (a)LSV performance and (b) Tafel slopes of precursors for HER.

Fig. S11. EIS of as-prepared electrocatalysts for HER performance.

Fig. S12. CV curves of HER catalysts with varying scan rates from 10 to 100 mV s⁻¹ (a) WSe_2/WO_2 , (b) $CoSe/Co_3O_4$ and (c) $WCoSe/WCo_3O_4$ heterostructure electrocatalysts. (f) ECSA for $WCoSe/WCo_3O_4$ heterostructure and other comparative electrocatalysts during HER process.

Fig. S13. The HER stability performance: a) chronopotentiometric response after 50 h and b) LSV curves of OER performance after long term stability of 50 h for WCoSe/WCo₃O₄ HS electrocatalyst.

Fig. S14. a) Low and b) high magnification SEM of WCoSe/WCo₃O₄ heterostructure after HER performance.

Fig. S15. Long term stability of $Pt/C||RuO_2$ device.

Fig. S16. SEM and TEM after overall water splitting of WCoSe/WCo₃O₄||WCoSe/WCo₃O₄||wCoSe/WCo₃O₄||

Fig. S17. XPS after overall water splitting device.

OER catalysts	Electrolytes	Current density (J)	Overpotent ial (mV)	Tafel (mV dec ⁻¹)	References
WCoSe/WCo ₃ O ₄	1.0 M KOH	10 mA cm ⁻²	175	62	This work
Mn (Fe _{0.3} Ni _{0.7})O _x	1.0 M KOH	10 mA cm ⁻²	262	-	1
FeNi ₃ @NC	1.0 M KOH	10 mA cm ⁻²	277	77	2
meso-NPC/Co ₂ NiO _x	1.0 M KOH	10 mA cm ⁻²	330	54	3
FeNi2S4 NPs/CB	1.0 M KOH	10 mA cm ⁻²	405	126	4
Co ₂ P/CoNPC	1.0 M KOH	10 mA cm ⁻²	326	72.6	5
Re/ReS2-7H/CC	1.0 M KOH	10 mA cm ⁻²	290	-	6
CoP-B1	1.0 M KOH	10 mA cm ⁻²	297	58.1	7
Fe ₃ O ₄ /CoO CNTs	1.0 M KOH	10 mA cm ⁻²	270	59	8
Ni10-CoPi	1.0 M KOH	10 mA cm ⁻²	320	44.5	9
W ₂ N/WC	1.0 M KOH	10 mA cm ⁻²	320	122.8	10

Table S1. Comparison of OER performance with previous reported state-of-the-art OER catalysts.

HER catalysts	Electrolytes	Current density (J)	Overpotent ial (mV)	Tafel (mV dec ⁻¹)	References
WCoSe/WCo ₃ O ₄	1.0 M KOH	10 mA cm ⁻²	98	72	This work
CFeNiP	1.0 M NaOH	10 mA cm ⁻²	132	58	11
NiRu-LDH	1.0 M KOH	10 mA cm ⁻²	165	107	12
CoMoO ₄ ·nH ₂ O/CF	1.0 M KOH	10 mA cm ⁻²	-	134	13
Te/FeNiOOH-NCs	1.0 M KOH	10 mA cm ⁻²	167	93	14
Ni/Mo ₆ Ni ₆ C@C	1.0 M KOH	10 mA cm ⁻²	101	88	15
MoS ₂ /MoN-8	1.0 M KOH	10 mA cm ⁻²	132	98	16
Mo ₂ N/NF	1.0 M KOH	10 mA cm ⁻²	109.7	-	17
MoP/NPG	1.0 M KOH	10 mA cm ⁻²	126	56	18
MoP@NC	1.0 M KOH	10 mA cm ⁻²	149	55.9	19
Se-MoS ₂ /CoSe ₂	1.0 M KOH	100 mA cm ⁻²	93	-	20

Table S2. Comparison of HER performance with previous reported state-of-the-art HER catalysts.

References

- 1. D. M. Morales, M. A. Kazakova, S. Dieckhöfer, A. G. Selyutin, G. V. Golubtsov, W. Schuhmann and J. Masa, *Advanced Functional Materials*, 2020, **30**, 1905992.
- D. Chen, J. Zhu, X. Mu, R. Cheng, W. Li, S. Liu, Z. Pu, C. Lin and S. Mu, *Appl. Catal. B Environ.*, 2020, **268**, 118729.
- 3. J. Wang and H. C. Zeng, ACS Applied Materials & Interfaces, 2020, **12**, 50324-50332.
- 4. J. Jiang, Y.-J. Zhang, X.-J. Zhu, S. Lu, L.-L. Long and J.-J. Chen, *Nano Energy*, 2021, **81**, 105619.
- H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang and Q. Xu, *Adv. Mater.*, 2020, **32**, 2003649.
- 6. Q.-Q. Pang, Z.-L. Niu, S.-S. Yi, S. Zhang, Z.-Y. Liu and X.-Z. Yue, *Small*, 2020, **16**, 2003007.
- 7. G. Yuan, J. Bai, L. Zhang, X. Chen and L. Ren, *Appl. Catal. B Environ.*, 2021, **284**, 119693.
- 8. Y. Luo, H. Yang, P. Ma, S. Luo, Z. Zhao and J. Ma, ACS Sus. Chem. Eng., 2020, **8**, 3336-3346.
- 9. L. Yang, H. Ren, Q. Liang, K. N. Dinh, R. Dangol and Q. Yan, *Small*, 2020, **16**, 1906766.
- J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu and X. Guo, *Adv. Mater.*, 2020, 32, 1905679.
- 11. F.-T. Tsai, Y.-T. Deng, C.-W. Pao, J.-L. Chen, J.-F. Lee, K.-T. Lai and W.-F. Liaw, *J. Mater. Chem. A.*, 2020, **8**, 9939-9950.
- 12. D. Li, X. Chen, Y. Lv, G. Zhang, Y. Huang, W. Liu, Y. Li, R. Chen, C. Nuckolls and H. Ni, *Appl. Catal. B Environ.*, 2020, **269**, 118824.
- W. Hu, Q. Shi, Z. Chen, H. Yin, H. Zhong and P. Wang, ACS Appl. Mater. Interfaces., 2021, 13, 8337-8343.
- 14. S. Ibraheem, X. Li, S. S. A. Shah, T. Najam, G. Yasin, R. Iqbal, S. Hussain, W. Ding and F. Shahzad, ACS Appl. Mater. Interfaces., 2021, **13**, 10972-10978.
- Q.-Q. Pan, C.-Y. Xu, X. Li, J.-F. Zhang, X.-L. Hu, Y. Geng and Z.-M. Su, *Chem. Eng. J.*, 2021, 405, 126962.
- A. Wu, Y. Gu, Y. Xie, H. Yan, Y. Jiao, D. Wang and C. Tian, *J. Alloys. Comp.*, 2021, 867, 159066.

- 17. S. H. Park, T. H. Jo, M. H. Lee, K. Kawashima, C. B. Mullins, H.-K. Lim and D. H. Youn, *J. Mater. Chem. A.*, 2021, **9**, 4945-4951.
- R. Ge, J. Huo, T. Liao, Y. Liu, M. Zhu, Y. Li, J. Zhang and W. Li, *Appl. Catal. B Environ.*, 2020, 260, 118196.
- 19. C. Pi, C. Huang, Y. Yang, H. Song, X. Zhang, Y. Zheng, B. Gao, J. Fu, P. K. Chu and K. Huo, *Appl. Catal. B Environ.*, 2020, **263**, 118358.
- 20. L. Liao, J. Sun, D. Li, F. Yu, Y. Zhu, Y. Yang, J. Wang, W. Zhou, D. Tang, S. Chen and H. Zhou, *Small*, 2020, **16**, 1906629.