Supporting Information

Charge Density of Intercalants inside Layered Birnessite Manganese Oxide Nanosheets Determining Zn-ion Storage Capability towards Rechargeable Zn-ion Batteries

Praeploy Chomkhuntod, Kanit Hantanasirisakul, Salatan Duangdangchote, Nutthaphon

Phattharasupakun, and Montree Sawangphruk*

Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

*Corresponding author. Tel: +66(0)33-01-4251 Fax: +66(0)33-01-4445.

E-mail address: montree.s@vistec.ac.th (M. Sawangphruk).

ORCID ID: https://orcid.org/0000-0003-2769-4172

Computational Methods

All calculations reported in this work were performed by Vienna ab initio simulation package (VASP) based on the periodic plane-wave density functional theory (DFT).¹⁻³ The interaction between ion cores and valence electrons was accounted by the projectoraugmented wave (PAW) pseudopotentials.⁴ The exchange and correlation interactions between electrons were treated within the generalized gradient approximation (GGA) with the Perdev-Burke-Ernzerhof (PBE) parameterization.^{5, 6} The additional van der Waals (vdW) contributions were obtained from the semiempirical D2 method of Grimme (DFT-D2).⁷ The effect of 3d electron correlation can be improved by considering on-site Coulomb (U) and exchange (J) interactions. On-site Hubbard term U–J values of 3.9 eV were applied for Mn atom.^{8,9} The cut-off energy for the expanded plane-wave basis set was set to 450 eV. The convergence thresholds for full geometry optimizations were set to 10⁻⁵ eV and 0.02 eV/Å for each electronic and ionic step. The Brillouin zone integration was sampled via the Monkhorst-Pack (MP) with the 2×3×4 *k*-points mesh for supercell and $2 \times 3 \times 4$ *k*-points mesh for bulk.¹⁰ The calculated relative binding $({}^{E_{b}})$ energy was obtained from the equation as follows: $E_b = E_{Zn/MnO_2} - E_{Zn} - E_{MnO_2}$

where $E_{Zn/MnO2}$, E_{Zn} , and E_{MnO2} are the total energies of the adsorbed Zn in the MnO₂ structure, the pristine MMnO₂ structure, and the bulk Zn, respectively.

Sample	X/Mn Ratio				
	ICP	XRF			
Li-MnO ₂	0.33	N/A*			
Ca-MnO ₂	0.15	0.14			
Al-MnO ₂	0.07	0.07			

Table S1 Elemental analysis, where X=Li, Ca, and Al.

* Li detection is not applicable with XRF technique.

Fig. S1 The TGA curves of the as-prepared MnO_2 at a heating rate of 10 °C min⁻¹ under air atmosphere.

Fig. S2 Galvanostatic charge-discharge profiles at different current densities of (a) $Li-MnO_2$ and (b) Ca-MnO₂.

Fig. S3 CV profiles as a function of scan rate of (a) Li-MnO₂ and (b) Ca-MnO₂.

Fig. S4 GITT profiles during discharging process of (a) Li-MnO₂ and (b) Ca-MnO₂.

Fig. S5 XPS profiles after charging/discharging process of (a) Li-MnO₂ and (b) Ca-MnO₂.

Sample	Morphology	Electrolyte	Window	Capacity	Stability	Ref
		-	potential			
α-MnO ₂	nanorod	1 M ZnSO ₄	0.7-2.0 V	167 mAh g ⁻¹	70% after 30 cycles	[11]
			vs. Zn/Zn^{2+}	at 42 mA g ⁻¹	at 42 mA g ⁻¹	
Bi-α-MnO ₂	nanowire	$2 \text{ M ZnSO}_4 +$	0.8-1.9 V	325 mAh g ⁻¹	90.9% after 2000	[12]
_		0.1 M MnSO ₄	vs. Zn/Zn^{2+}	at 0.3 A g ⁻¹	cycles at 1 A g ⁻¹	
ε-MnO ₂	nanosheet	$2 \text{ M ZnSO}_4 +$	1.0-1.8 V	183.4 mAh g ⁻¹	83% after 1000	[13]
_		0.5 M MnSO ₄	vs. Zn/Zn^{2+}	at 0.5 A g ⁻¹	cycles at 5 A g ⁻¹	
β-MnO ₂	nanofiber	$3 \text{ M ZnSO}_4 +$	1.0-1.8 V	288 mAh g ⁻¹	84.3% after 1000	[14]
		0.2 M MnSO ₄	vs. Zn/Zn^{2+}	at 0.05 C	cycles at 2 C	
γ-MnO ₂	nanowire	1 M ZnSO ₄	1.0-1.8 V	219 mAh g ⁻¹	37% after 40 cycles	[15]
	/fiber		vs. Zn/Zn^{2+}	at 0.5 mA cm ⁻²	at 0.5 mA cm ⁻²	
δ-MnO ₂	nanowire	$2 \text{ M ZnSO}_4 +$	1.0-1.8 V	<200 mAh g ⁻¹	40% after 700 cycles	[16]
		0.1 M MnSO ₄	vs. Zn/Zn^{2+}	at 0.2 A g ⁻¹	at 200 mA g ⁻¹	
δ-MnO ₂ /C	nanoflower	2.0 M ZnSO ₄ +	1.0-1.9 V	203 mA h g ⁻¹	61.85% after 1500	[17]
		0.5 M MnSO ₄	vs. Zn/Zn^{2+}	at 3 A g ⁻¹	cycles at 2 A g ⁻¹	
δ-MnO ₂	flake	1 M ZnSO ₄	1.0-1.8 V	233 mAh g ⁻¹ at	\sim 45% after 50 cycles	[18]
			vs. Zn/Zn^{2+}	100 mA g ⁻¹	at 100 mA g ⁻¹	
PANI-	grainy	2 M ZnSO4 +	1.0-1.8 V	110 mA h g ⁻¹	~83% after 5000	[19]
intercalated		0.1 M MnSO4	vs. Zn/Zn^{2+}	at 3 A g ⁻¹	cycles at 2 A g ⁻¹	
δ-MnO ₂				_		
δ-MnO ₂	flake	1 M ZnSO ₄	1.0-1.8 V	252 mAh g ⁻¹	~ 44.4 % after 100	[20]
			vs. Zn/Zn^{2+}	at 83 mA g ⁻¹	cycles at 83 mA g ⁻¹	
δ-MnO ₂ /	nanoflower	1 M ZnSO ₄	1.0-1.8 V	181 mAh g ⁻¹	~ 90% after 100	[21]
graphite			vs. Zn/Zn^{2+}	at 200 mA g ⁻¹	cycles at 400 mA g ⁻¹	
Al-	sheet	2 M ZnSO ₄	1.0-1.8 V	210 mAh g ⁻¹	84% after 2000	This
intercalated			vs. Zn/Zn^{2+}	at 100 mA g ⁻¹	cycles at 2 A g ⁻¹	work
δ-MnO ₂					_	

Table S2 The benchmarking table of capacity and cycling performance for manganese oxide-based cathodes in aqueous Zn-ion batteries.

References

- 1. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* 1993, 47 (1), 558-561.
- 2. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6* (1), 15-50.
- 3. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54* (16), 11169-11186.
- 4. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **1999**, *59* (3), 1758-1775.
- 5. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77 (18), 3865-3868.
- 6. Perdew, J. P.; Ernzerhof, M.; Burke, K., Rationale for mixing exact exchange with density functional approximations. *J. Chem. Phys.* **1996**, *105* (22), 9982-9985.
- 7. Stefan, G., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comput. Chem.* **2006**, *27* (15), 1787-1799.
- 8. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I. *Phys. Rev. B* **1991**, *44* (3), 943-954.
- 9. Mueller, T.; Hautier, G.; Jain, A.; Ceder, G., Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing. *Chem. Mater.* 2011, 23 (17), 3854-3862.
- 10. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Phys. Rev. B* 1976, *13* (12), 5188-5192.

- Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H., Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. *Chem. Commun.* 2015, 51 (45), 9265-9268.
- 12. Ma, K.; Li, Q.; Hong, C.; Yang, G.; Wang, C., Bi Doping-Enhanced Reversible-Phase Transition of α-MnO2 Raising the Cycle Capability of Aqueous Zn–Mn Batteries. *ACS Appl. Mater. Interfaces* **2021**, *13* (46), 55208-55217.
- 13. Zhang, Y.; Liu, Y.; Liu, Z.; Wu, X.; Wen, Y.; Chen, H.; Ni, X.; Liu, G.; Huang, J.; Peng, S., MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. *J. Energy Chem.* **2022**, *64*, 23-32.
- 14. Liu, M.; Zhao, Q.; Liu, H.; Yang, J.; Chen, X.; Yang, L.; Cui, Y.; Huang, W.; Zhao, W.; Song, A.; Wang, Y.; Ding, S.; Song, Y.; Qian, G.; Chen, H.; Pan, F., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. *Nano Energy* **2019**, *64*, 103942.
- Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J., Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System. *Chem. Mater.* 2015, 27 (10), 3609-3620.
- 16. Chen, X.; Li, W.; Zeng, Z.; Reed, D.; Li, X.; Liu, X., Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. *Chem. Eng. J.* **2021**, *405*, 126969.
- 17. Li, G.; Huang, Z.; Chen, J.; Yao, F.; Liu, J.; Li, O. L.; Sun, S.; Shi, Z., Rechargeable Zn-ion batteries with high power and energy densities: a two-electron reaction pathway in birnessite MnO2 cathode materials. *J. Mater. Chem. A* **2020**, *8* (4), 1975-1985.
- 18. Alfaruqi, M. H.; Islam, S.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y.-K.; Kim, K.; Kim, J., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. *Electrochim. Acta* **2018**, *276*, 1-11.
- 19. Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. *Nat. Comm.* **2018**, *9* (1), 2906.
- Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J., A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. *Electrochem. commun.* 2015, 60, 121-125.
- Khamsanga, S.; Pornprasertsuk, R.; Yonezawa, T.; Mohamad, A. A.; Kheawhom, S., δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. *Sci. Rep.* 2019, 9 (1), 8441.