## Supporting Information

## Phosphorus-bridged ternary metal alloy encapsulated in fewlayered nitrogen-doped graphene for highly efficient electrocatalytic hydrogen evolution

Liping Huang,<sup>a</sup> Wenyao Li<sup>\*</sup>,<sup>a,c</sup> Xudun Shen,<sup>a</sup> Chunyan Sun,<sup>a</sup> Jin Yang,<sup>a</sup> Xue-rong Shi<sup>\*</sup>,<sup>a</sup> and Min Zeng<sup>\*</sup>,<sup>b</sup>

<sup>a.</sup> School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

<sup>b.</sup> Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China.

<sup>c.</sup> Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.

\* Corresponding authors

E-mails: Wenyao.li@ucl.ac.uk (Wenyao Li); <u>shixuer05@mails.ucas.ac.cn</u> (Xue-Rong Shi); <u>minzeng@sjtu.edu.cn</u> (Min Zeng)

## **Fiugres:**



Figure S1 Phenomenon of the materials before reaction (a) and after the reaction completed (b).

The left picture shows the state when all the reaction materials are added, and the mixed solution is uniform, the right picture shows the phenomenon of the reaction after 20 h at 80 °C. From the picture, we can find that the bottles labeled FeCo, FeMo, FeCoMo generate precipitations, while the CoMo has no reaction. Thus, in subsequent experiments, CoMo was not used as a reference control.



Figure S2 (a-b) SEM images of FeCo@NC. (c-d) SEM images of FeMo@NC. (e-f) SEM images of FeCoMo@NC.



Figure S3 Cyclic voltammograms of FeCo@NG, FeMo@NG, FeCoMo@NG, FeCoMo@NG-P within the range of 0.13 to 0.23 V *vs* RHE with scan rate from 20 to  $100 \text{ mV s}^{-1}$  in 1 M KOH.



Figure S4 Cyclic voltammograms of FeCo@NG, FeMo@NG, FeCoMo@NG, FeCoMo@NG-P within the range of 0.13 to 0.23 V vs RHE with scan rate from 20 to  $100 \text{ mV s}^{-1}$  in 0.5 M H<sub>2</sub>SO<sub>4</sub>.



**Figure S5** HER polarization curves for FeCoMo@NC and FeCoMo@NC-P samples after soaking in 0.5 M H<sub>2</sub>SO<sub>4</sub> for several hours.



**Figure S6** (a) HER polarization curves for FeCoMo@NC and FeCoMo@NC-P samples in 1 M KOH+10 mM SCN<sup>-</sup> mixed electrolyte. (b) The corresponding Tafel slope from (a).



**Figure S7** (a) Top and side view of the most stable H adsorption configuration on FeMo(110), and (b) FeCoMoP(110)-P site.

 Table S1 Chemical compositions of FeCoMo@NC-P by XPS measurement.

| Sample      | C (atom | N (atom | Fe (atom | Co (atom | Mo (atom | P (atom |
|-------------|---------|---------|----------|----------|----------|---------|
|             | %)      | %)      | %)       | %)       | %)       | %)      |
| FeCoMo@NC-P | 79.91   | 4.74    | 2.56     | 2.88     | 0.94     | 8.96    |

 Table S2 Comparison of HER performance of FeCoMo@NG-P with reported
 electrocatalysts in alkaline solution.

| Electrocatalyst             | Electrolyte | Mass loading<br>(mg cm <sup>-2</sup> ) | Overpotential<br>@10 mA cm <sup>-2</sup> | Tafel slops<br>(mV dec <sup>-1</sup> ) | Ref.      |
|-----------------------------|-------------|----------------------------------------|------------------------------------------|----------------------------------------|-----------|
| FeCoMo@NG-P                 | 1.0 M KOH   | 0.189                                  | 170 mV                                   | 93.57                                  | This work |
| CoFe-Se-P                   | 0.1 M KOH   | 0.14                                   | 183.1 mV                                 | 181                                    | 1         |
| Ni-Fe-Pt NCs                | 1.0 M KOH   | 0.7                                    | 463 mV                                   | 81                                     | 2         |
| Ni-Fe-P                     | 1.0 M KOH   | 0.42                                   | 182 mV                                   | 85                                     | 3         |
| Co@Co-N/rGO                 | 1.0 M KOH   | 0.5                                    | 180 mV                                   | 43                                     | 4         |
| V-doped CoP                 | 1.0 M KOH   | 0.2                                    | 340 mV                                   | 86.1                                   | 5         |
| FeCo/Co <sub>2</sub> P@NPCF | 1.0 M KOH   | 0.28                                   | 260 mV                                   | 120                                    | 6         |
| ONPPGC/OCC                  | 1.0 M KOH   | 0.1                                    | 446 mV                                   | 154                                    | 7         |
| Fe@N-C                      | 1.0 M KOH   | 0.07                                   | 330 mV                                   | 158                                    | 0         |
| Co@N-C                      | 1.0 M KOH   | 0.97                                   | 210 mV                                   | 108                                    | 0         |

| Flootroootalvet                   | Electrolyte                             | Mass loading     | Overpotential            | Tafel slops     | Ref.      |
|-----------------------------------|-----------------------------------------|------------------|--------------------------|-----------------|-----------|
| Electrocataryst                   |                                         | $(mg \ cm^{-2})$ | $@10 \text{ mA cm}^{-2}$ | $(mV dec^{-1})$ |           |
| FeCoMo@NG-P                       | 0.5 M H <sub>2</sub> SO <sub>4</sub>    | 0.189            | 196 mV                   | 63.17           | This work |
| NSC/MPA-5                         | $0.5 \text{ M H}_2 \text{SO}_4$         | 0.25             | 331 mV                   | 99              | 9         |
| S-600                             | $0.5 \text{ M H}_2 \text{SO}_4$         | 0.285            | 262 mV                   | 74              | 10        |
| FeCo@NCNTs-NH                     | $0.1 \text{ M H}_2 \text{SO}_4$         | 0.32             | 276 mV                   | 74              | 11        |
| CoNi@NC                           | $0.1 \text{ M H}_2 \text{SO}_4$         | 0.32             | 224 mV                   | 104             | 12        |
| Fe-CoP/HPFs                       | $0.5 \text{ M} \text{ H}_2 \text{SO}_4$ | 0.796            | 198 mV                   | 68              | 13        |
| Co-NRCNT                          | $0.5 \text{ M H}_2 \text{SO}_4$         | 0.28             | 260 mV                   | 69              | 14        |
| C <sub>3</sub> N <sub>4</sub> @NG | $0.5 \text{ M H}_2 \text{SO}_4$         | 0.1              | 240 mV                   | 51.5            | 15        |
| Ni-Sn@C NPs                       | $0.5 \text{ M H}_2 \text{SO}_4$         | 0.1              | ~350 mV                  | 35              | 16        |

**Table S3** Comparison of HER performance of FeCoMo@NG-P with reported electrocatalysts in  $0.5 \text{ M H}_2\text{SO}_4$ .

## References

- 1. L. He, B. Cui, B. Hu, J. Liu, K. Tian, M. Wang, Y. Song, S. Fang, Z. Zhang, Q. Jia, ACS Appl. Energy Mater. 2018, 1, 3915-3928.
- 2. M. Fu, Q. Zhang, Y. Sun, G. Ning, X. Fan, H. Wang, H. Lu, Y. Zhang, H. Wang, Int.
- J. Hydrogen Energ. 2020, 45, 20832-20842.
- 3. C. Xuan, J. Wang, W. Xia, Z. Peng, Z. Wu, W. Lei, K. Xia, H. L. Xin, D. Wang, *ACS Appl. Mater. Interfaces* 2017, **9**, 26134-26142.
- 4. D. Zhao, J. Dai, N. Zhou, N. Wang, P. Xinwen, Y. Qu, L. Li, *Carbon* 2019, **142**, 196-205.
- 5. J.-F. Qin, J.-H. Lin, T.-S. Chen, D.-P. Liu, J.-Y. Xie, B.-Y. Guo, L. Wang, Y.-M.

Chai, B. Dong, J. Energy Chem. 2019, 39, 182-187.

419.

Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin, X. Fang, *Adv. Energy Mater.* 2020, 10, 1903854.

7. J. Lai, S. Li, F. Wu, M. Saqib, R. Luque, G. Xu, *Energy Environ. Sci.* 2016, **9**, 1210-1214.

8. J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li, X. Bao, *J. Mater. Chem. A* 2014,
 2, 20067-20074.

 A. Mulyadi, Z. Zhang, M. Dutzer, W. Liu, Y. Deng, *Nano Energy* 2017, **32**, 336-346.

10. Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He, Q. Chen, *Energy Environ. Sci.* 2015, **8**, 3563-3571.

11. J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, *Energy Environ. Sci.* 2014, 7, 1919-1923.

12. J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. 2015, 54, 2100-2104.

Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.-C. Cheong, D. Zhao,
 K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, *Nano Energy* 2019, 56, 411-

14. X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T. Asefa, *Angew. Chem. Int. Ed.* 2014, **53**, 4372.

15. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S. Z. Qiao, *Nat. Commun.* 2014, **5**, 3783.

16. L. Lang, Y. Shi, J. Wang, F. B. Wang, X. H. Xia, *ACS Appl. Mater. Interfaces* 2015, 7, 9098-9102.