Supplementary Information

Electromagnetic Wave Shielding Flexible Films with Near-Zero Reflection in the 5G Frequency Band

Seung Han Ryu[†]^a, Byeongjin Park[†]^{a,*}, You Kyung Han^a, Suk Jin Kwon^a, Taehoon Kim^a, Rachida Lamouri^b, Ki Hyeon Kim^b, Sang-Bok Lee^{a,*}

^a Composites Research Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, Changwon, Gyeongsangnam-do 51508, Republic of Korea

^b Department of Physics, Yeungnam University, Daehakro 280, Gyeongsan, Gyeongsangbuk-do 38541, Republic of Korea.

[†] These authors contributed equally to this work.

*Corresponding authors. <u>b.park@kims.re.kr</u> (Byeongjin Park) and <u>leesb@kims.re.kr</u> (Sang-Bok Lee),

Figure S1. (a) Scheme of the experimental procedure of Ag@nlyon wire stitching on the CIP/TPU composite and (b) captured image of sewing video.

Figure S2. A scanning electron microscopic image (SEM image) of the proposed EMI shielding film and SEM-EDS mapping images of the film with spectra of Ag, O, Fe, and C.

Figure S3. Permittivity, permeability and refractive index of CIP/TPU composite layer.

Figure S4. EMI shielding effectiveness of the shielding film with 1 mm grid period (Figure 3 (c)) in 26.5 – 40 GHz.

Figure S5. Visualized resonant frequencies of 16 different EMI shielding films with grid period from 1 to 5 mm and layer thickness from 100 to 400 μ m.

Figure S6. EMI shielding effectiveness of EMI shielding films with different grid geometries, grid periods (1-5 mm) and wire diameters (150-280 µm).

Figure S7. EMI shielding effectiveness of EMI shielding films with different closed areas (5.9-48.2%).

Figure S8. EMI shielding effectiveness of an aluminum foil.

Figure S9. EMI shielding effectiveness of EMI shielding films with different film structures, composite layer thickness (100-300 μ m) and closed areas (5.9-27.8%).

Form	Main	Thickness	SE _R	SEA	R	Α	Referenc
	Materials	(mm)	(dB)	(dB)	(%)	(%)	e
Film	Metal	0.18	20	70	99.00	1.00	[6]
Film	Metal	0.01	10	15	90.00	9.68	[7]
Film	MXene	1	9.2	67.8	87.98	12.02	[9]
Composite	Graphene	2.5	3	24	49.88	49.92	[10]
Composite	Graphite	5	5	35	68.38	31.61	[11]
Composite	CNT	0.5	5.4	9.7	71.16	25.75	[12]
Composite	CNT	0.5	8.9	42.4	87.12	12.88	[12]
Composite	CNT	0.1	7.91	14.5	83.82	15.61	[13]
Composite	Graphene	0.1	8.76	13.82	86.70	12.75	[13]
Film	Graphene	0.02	11.3	23.8	92.59	7.38	[15]
Composite	CNT	0.4	9.3	29.3	88.25	11.74	[16]
Composite	Graphene	0.4	19.2	14.5	98.80	1.16	[16]
Bulk	Ferrite	3.5	0.5	9.5	10.87	79.13	[28]
Composite	Alloy	2	3.6	10.4	56.35	39.67	[29]
Composite	Alloy	2	2.1	6.8	38.34	48.78	[29]
Composite	Ferrite / CNT	0.7	6.3	16.2	76.56	22.88	[31]
Composite	Ferrite / Graphene	1.1	5.3	30.3	70.49	29.48	[31]
Foam	CNT	5	0.5	25.5	10.87	88.87	[32]
Foam	CNT	3	2.3	23.89	41.12	58.64	[33]
Foam	CNT	5	2.3	47.3	41.12	58.88	[33]
Composite	CIP / Ag@Nylon	0.4	0.01	11.2	0.23	92.20	This Work (NZR)
Composite	CIP / CNT Ag@Nylon	0.5	0.47	24.2	10.2	89.40	This Work (NZT)

Table S1. Comparison with the previously reported EMI shielding materials at 26 GHz