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As noted in the text, we considered two methods for calculating the defect formation free energies , viz. ∆𝐴𝑓

Methods 1 and Method 2. In both cases, we calculate the Helmholtz energy of a given system according to:

(1)𝐴(𝑇) = 𝑈0 + 𝐴𝑣𝑖𝑏(𝑇) = 𝑈0 + 𝑈𝑣𝑖𝑏(𝑇) ‒ 𝑇𝑆𝑣𝑖𝑏(𝑇)

The main difference is that in Method 2 we only take into account the frequencies at the Γ-point, as opposed 
to interpolating frequencies and integrating over the Brillouin zone (BZ) as in Method 1. This is a common 
approximation, and is useful in high throughput screening of materials and defects as it reduces the computational 
demand of the calculations. Moreover, since computing the force constants in a single (defect) cell formally only 
allows the Γ-point frequencies to be evaluated exactly, for practical defect supercells integrating over the BZ will 
require Fourier interpolation, which is itself an approximation.

One of the issues with Method 1 is that at the Γ-point the three acoustic modes correspond to rigid translations 
with zero frequency, whereas away from Γ they tend to be low-frequency modes and heavily populated at finite 
temperature, and therefore to make a large contribution to the vibrational partition function. This is usually dealt with 
through one of three approximations as follows.

(1) Approximation 1: the low-temperature limit. We assume the translation modes do not contribute to the energy of 

the phonon system, and the vibrational free energy is computed based on the frequencies of the other 3  - 3 Γ-point 𝑛𝑎

modes. 
The vibrational internal energy is given by:

(2)
𝑈𝑣𝑖𝑏(𝑇) =

3𝑛𝑎

∑
𝑖

𝑅𝜃𝑖[1
2

+
1

𝑒𝑥𝑝(𝜃𝑖 𝑇) ‒ 1] = 𝑈𝑍𝑃𝐸 +

3𝑛𝑎

∑
𝑖

𝑅𝜃𝑖

𝑒𝑥𝑝(𝜃𝑖 𝑇) ‒ 1

where  is the vibrational zero-point energy and the sums run over the 3  vibrational modes with frequencies 𝑈𝑍𝑃𝐸 𝑛𝑎

 and the characteristic vibrational temperatures  given by:𝜈𝑖 𝜃𝑖

(3)
θi =

hνi

kB

The  is calculated as:𝑆𝑣𝑖𝑏

(4)
𝑆𝑣𝑖𝑏(𝑇) =

𝑈𝑣𝑖𝑏(𝑇) ‒ 𝐴𝑣𝑖𝑏(𝑇)

𝑇

where  is the vibrational Helmholtz free energy:𝐴𝑣𝑖𝑏

(5)
𝐴𝑣𝑖𝑏(𝑇) = 𝑈𝑍𝑃𝐸 +

3𝑛𝑎

∑
𝑖

𝑅𝑇𝑙𝑛(1 ‒ 𝑒𝑥𝑝[ ‒ 𝜃𝑖

𝑇 ])
(2) Approximation 2: the high-temperature (Dulong-Petit) limit. We assume that each translational mode has a 

constant modal heat capacity  and therefore that the  associated with the three translational modes is:𝐶 = 𝑅 𝑈 𝑡
𝑣𝑖𝑏

(6)
𝑈 𝑡

𝑣𝑖𝑏(𝑇) =  3 × ∫𝐶𝑣𝑑𝑇 = 3 × ∫𝑅𝑑𝑇 = 3𝑅𝑇
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The corresponding vibrational entropy  is given by:𝑆 𝑡
𝑣𝑖𝑏

(7)
𝑆 𝑡

𝑣𝑖𝑏(𝑇) =  ∫𝐶𝑣

𝑇
𝑑𝑇 = 3𝑅∫1

𝑇
𝑑𝑇 = 3𝑅𝑙𝑛(𝑇)

The additional contributions from Eqns. S6 and S7 can then be added to Eqns. S2 and S4, respectively.

(3) Approximation 3. Since we work with a supercell and expect some degree of band folding, we assume that the 
three lowest-energy modes with non-zero frequency are folded zone-boundary acoustic modes from the parent 
primitive cell. We further assume a linear dispersion from zero at the zone centre. Thus, we can approximate that the 
first 3 modes to contribute to  and , would assume values that are the midpoint between 0 THz and the three 𝑈𝑣𝑖𝑏 𝑆𝑣𝑖𝑏

lowest-energy modes with non-zero frequency. Once determined, these frequencies can be used to replace the zero-
frequency acoustic modes in Approximation 1.

Fig. S1 compares the calculated defect-formation free energies as a function of temperature for the 
ThF<111>, OF<113>, S<100>, S<110> and S<111> defects computed using Method 1, as in the text, and Method 2 
with Approximations 1-3. As noted in the text, there is some small variation in the temperature dependence from the 
four sets of predictions, by up to ~0.25-0.5 eV at  = 3600 K, but the qualitative stability ordering remains unchanged.𝑇

Figure S1 Defect-formation free energies for the S<100> (A), S<110> (B), S<111> (C), OF<133> (D) and ThF<111> (E) 
defects calculated using Method 2 with Approximations 1-3 and compared to the results form Method 1 shown in the main paper. 
Note that in (D) and (E) Approximations 1 and 2 produce very similar results and the corresponding lines thus overlap with one 
another.

The absolute infrared activity of a -point mode with band index  is calculated as:1–3Γ 𝑠

(8)

𝐼𝐼𝑅(𝑠) =  
3

∑
𝛼 = 1

|
𝑛𝑎

∑
𝑗 = 1

3

∑
𝛽 = 1

𝑍 ∗
𝛼𝛽(𝑗)𝑋𝛽(𝑠,𝑗)|2
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where the indices  and  label the Cartesian directions,  are the Born effective-charge tensors of the th atom, 𝛼 𝛽 𝑍 ∗ (𝑗) 𝑗
and  are the cartesian displacements of atom  for the band index  obtained by dividing the eigenvector 𝑋(𝑠,𝑗) 𝑗 𝑠

components  by the square root of the corresponding atomic mass .𝑊(𝑠,𝑗) 𝑚𝑗

The Raman activity tensors for the modes are computed as the derivative of the high-frequency dielectric constant 
 with respect to the normal mode amplitude  using the central difference scheme:3,4𝜀∞ 𝑄(𝑠)

(9)
𝐼𝑅𝑎𝑚𝑎𝑛,𝛼𝛽(𝑠) =

Ω
4𝜋[ ‒

1
2

𝜀 ∞
𝛼𝛽( ‒ 𝑠)

Δ𝑄(𝑠)
+

1
2

𝜖 ∞
𝛼𝛽( + 𝑠)

Δ𝑄(𝑠) ]  

where  is the unit-cell volume. The Raman intensity measured in an experiment depends on the direction and Ω
polarisation of the exciting radiation and the collection direction and polarisation of the analyser. We assume a 
powder sample and compute the scalar average of the Raman tensor according to:2,3

(10)
𝐼𝑅𝑎𝑚𝑎𝑛 = 45|13(𝐼11 + 𝐼22 + 𝐼33)|2 +

7
2[(𝐼11 ‒ 𝐼22)2 + (𝐼11 ‒ 𝐼33)2 + (𝐼22 ‒ 𝐼33)2 + 6(𝐼12 2 + 𝐼13 2 + 𝐼23 2)]

where  are the components of the Raman tensor.𝐼𝛼𝛽

IR and Raman spectra are modelled as a sum of the spectral lines from each of the 3  Γ-point modes. We assume a 𝑛𝑎

Lorentzian lineshape with the central frequencies and areas set to the calculated phonon frequencies and IR/Raman 
activities (Eqn. 8 and 10), such that the combined spectral intensity at a frequency  and temperature  is given by:𝑣 𝑇

 

𝐼(𝜈,𝑇) = ∑
𝑠

𝐼(𝑠) 
𝜋

1
2

Γ(𝑠,𝑇)

(𝑣 ‒ 𝑣(𝑠))2 + (1
2

Γ(𝑠,𝑇))2

(11)

The linewidths  may be set to a constant or can be extracted from the third-order phonon calculations. In the Γ(𝑠,𝑇)
latter case they are related to the temperature-dependent phonon lifetimes  according to:𝜏(𝑠,𝑇)

 (12)
𝜏(𝑠,𝑇) =  

1
2Γ(𝑠,𝑇)
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Figure S2 Simulated Raman spectrum of stoichiometric ThO2 using the calculated  = 600 K linewidth of Γ = 0.186 THz.𝑇
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Figure S3 Convergence of the harmonic function defined in Eqn. 16 in the text for the ThO2 primitice cell as a function of the 
-point sampling mesh. The curves in (A) and (B) are identical.𝑞

Figure S4 Comparison of the harmonic function defined in Eqn. 16 in the text computed for the ThO2 primitive cell with a 48
48 48 -point sampling mesh and the 96-atom supercell used for the defect models with a 10 10 10 mesh. The red and × × 𝑞 × ×

orange curve overlap.
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Figure S5 Convergence of the harmonic function defined in Eqn. 16 in the text for the S<100>, S<110> and S<111> defect 
models as a function of the -point sampling mesh.𝑞

Figure S6 Convergence of the harmonic function defined in Eqn. 16 in the text for the Th<111> and OF<133> defect models as 
a function of the -point sampling mesh.𝑞

Figure S7 Comparison of the thermal conductivity of stoichiometric ThO2 computed using three methods: (1) for the primitive 
cell using Eqn. 11; (2) for the 96-atom supercell using the CRTA model in Eqn. 16 with the  computed for the primitive 𝜏𝐶𝑅𝑇𝐴

cell; and (3) for the supercell using the constant  model with   fitted to reproduce the  of the primitive cell at  = 600 𝑃𝜆  𝑡ℎ𝑒 �̃� 𝜅𝑙𝑎𝑡𝑡 𝑇
K (Eqns. 11, 14 and 19 in main manuscript).
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Figure S8 Convergence of the weighted joint density of states (wJDOS) function  defined in Eqn. �̅�2(𝜔) = �̅�(1)
2 (𝜔) + �̅�(2)

2 (𝜔)

24 in the text for the stoichiometric 96-atom ThO2 supercell (A) and the OF<133> (B), ThF<111> (C), S<100> (D), S<110> (E) 
and S<111> (F) defect models as a function of the -point sampling mesh. Each pair of subplots shows the convergence 𝑞

separately for the component  and  functions.�̅�(1)
2 �̅�(2)

2
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Figure S9 Comparison of the phonon density of states (DOS) of stoichiometric ThO2 (black) to (1) the S<100>, S<110> and 
S<111> Schottky defects (blue, purple, red), and (B) the OF<133> and ThF<111> Frenkel defects (green, orange).

Figure S10 Estimated thermal conductivity of the five defect models considered in this work at  = 300K (left) and  = 600K 𝑇 𝑇

(right) as a function of crystal-grain size, computed using a boundary-scattering model and using the constant-  model outlined 𝑃𝜆

in the text.
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