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1 Nonadiabatic Molecular Dynamics with Time-

Domain Density Functional Theory

1.1 the Nonadiabatic Coupling

To begin with, the basic hamiltonian for ion-electron system can be writen as

H =
∑
i

P 2
i

2M
+
∑
j

p2j

2m
+
∑
i,i′

Vi,i′ (|~Ri − ~Ri′ |)

+
∑
j,j′

Vj,j′ (|~rj − ~rj′ |) +
∑
i,j

Vi,j(|~rj − ~Ri|),

(1)

where the last three terms are ion-ion, electron-electron, and ion-electron inter-
actions, respectively. The Born-Oppenheimer approximation begins with the
assumption that the full wavefunction can be expand as

Ψ(~R,~r) =
∑
n

Φn(~R)ϕn(~r, ~R), (2)

in which the ϕn(~r, ~R) are the solution of ion-electron problems with the fixed set

of coordinates ~R and the nuclear wavefunction Φn(~R), namely, the amplitude

for the ions to be found at the position ~R. Leting Ee,n(~R) be the energy of the
electron system with a fixed nuclear coordinates, it is easy to separate nuclear
eigenvalue equation from the total hamiltonian.

{
∑
i

P 2
i

2M
++

∑
i,i′

Vi,i′ (|~Ri − ~Ri′ |) + Ee,n(~R)}Ψ(~R,~r) = EΨ(~R,~r). (3)
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Multiplying the nuclear eigenvalue equation by the ϕ∗

m(~r, ~R) and integrate,
it is easy to see that the Vi,i′ involving purely algebraic operators has only
diagonal elements, however, the kinetic energy term has off-diagonal elements
explicity.

∑
i

〈m|
P 2
i

2M
Φn(~R)|n〉 = −

h̄2

2M

∑
i

{〈m|∇2
Ri
Φn(~R)|n〉

+2〈m|(∇Ri
Φn(~R)) · ∇Ri

|n〉+ 〈m|Φn(~R)∇2
Ri
|n〉}.

(4)

Thus, the first term only contains the diagonal elements and the others are
the n-th nonadiabatic couplings. Let the Ẽ denotes Vi,i′ + Ee,m(~R) and Tn

denotes − h̄2

2M
∇2

Ri
we rewrite equation 2 as

{
∑
n

{(Tn + Ẽn)δn,m −
h̄2

M
~d1mn · ∇Ri

−
h̄2

2M
d2mn}Φn(~R) = EΦn(~R), (5)

where the n-th order NA couplings between the electronic state n and m:

~d1m,n = 〈m|∇Ri
|n〉

d2m,n = 〈m|∇2
Ri
|n〉.

(6)

For the time-dependent (TD) Schrodinger equation,

ih̄∂tΨ(~r, ~R, t) = Ĥ(~r, ~R, t)Ψ(~r, ~R, t), (7)

following the steps mentioned above, it is easy to obtain the equation containing
n-th order NA couplings.

ih̄∂tΦi(~R(t)) =
∑
i

{(Ti + Ẽj)δi,j −
h̄2

M
~d1i,j∇Ri

−
h̄2

M
~d2i,j}Φi(~R(t)). (8)

In order to solve the time-dependent Schrodinger equation along the MD
trajectory, we treat nuclear degrees of freedom classically[1]. The operator Tn

and the first order of nonadiabatic coupling can be rewritten as

Tn =
P 2

2M

−h̄2
~d1i,j

M
∇R = −ih̄~d1i,j

P

M
.

(9)

The solution of the time-dependent Schrodinger equation is expressed on
the basis of the solutions of the single-particle equations within the Kohn-
Sham (KS) frame[2, 3]. The basis set is the adiabatic KS orbitals Φi(~r, ~R, t) =

2



∑
i ci(t)ϕi(~r, ~R). Thus, the time-dependent Schrodinger equation transforms to

an equation in the coefficients

ih̄∂tci(t) =
∑
j

cj(t){εjδi,j − ih̄~d1i,jṘ}, (10)

where the NA coupling

~d1i,jṘ = −ih̄〈i|
∂

∂t
|j〉. (11)

The numerical evaluation of the NA coupling follow finite difference method
proposed by Hammes-Schiffer and Tully [4]

~d1i,jṘ =
1

2dt
(〈i, t|j, t+ dt〉 − 〈i, t+ dt|j, t〉). (12)

1.2 Fewest-switches surface hopping (FSSH)

FSSH algorithm adopts the scheme of Colleen F. Craig et al.[5, 1], in which
the probabilities of transitions between electronic states is determined by the
off-diagonal elements. For example, the electron in state |i〉 jumping into state
|j〉 during the small time period dt, the probabilities of transitions is

Pi,j(t, dt) =
ρi,j(t)− ρi,j(t+ dt)

ρi,i(t)
, (13)

where the density matrix ρi,j(t) = c∗i (t)cj(t). By using the finite difference
method, the ρi,j(t) − ρi,j(t + dt) is approximately equal to −∂tρi,j(t)dt. As a
result, the probabilities of transitions between the |i〉 and the rest of the state
are

Pi(t) = 2
∑
j

∫ t+dt

t

dt
Im{−ih̄~di,jc

∗

i (t)cj(t))}

c∗i (t)ci(t)
. (14)

Noted that, if the Pi,j(t) < 0, the probabilities is reset to zero. The electron
remaining in state |i〉 is given by 1-Pi(t).

After we get the matrix of the probabilities, compare it to a random number
between 0 and 1, then determine whether it hops to a new state or not. More-
over, the Boltzmann factor is adopted to rescale the probabilities for electron
hopping to the high energy levels[1]. Thus, the state k to which the system hops
is defined by the condition

k−1∑
j=0

Gi,j(t) < ζ ≤

k∑
j=0

Gi,j(t), (15)

where the Gi,j(t) = bi,j(t)Pi,j(t) is the rescaled probabilities from state |i〉 to
|j〉.
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Figure S1: The averaged electrostatic potential of the β-SnS monolayer, here,
the black arrow pointing from + to − stands for the intrinsic dipole of 0.081
eÅ, and the potential difference is about 1.38 eV.
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Figure S2: PDOS of GaSe and β-SnS monolayer in the β-SnS/GaSe heterostruc-
ture, and the charge densities of band edges of the β-SnS/GaSe heterostructure:
➀ the VBM of β-SnS monolayer, ➁ the VBM of GaSe monolayer, ➂ the CBM
of β-SnS monolayer, ➃ the CBM of GaSe monolayer. The isosurface value is set
to 0.01 e/bobr3. The interlayer interaction delocalizes the state ➃ and state ➁.
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Table S1: The Calculated DP constant (E1), 2D elastic modulus (C2D in the
unit J/m2), effective mass (m∗ in the unit me), and carrier mobility ( in the
unit of cm2/V·s) for electron (e) and hole (e) at 300 K for GaSe and β-SnS
monolayer.

E1 C2D m∗ µ

GaSe e(x) -8.73 55.64 0.19 609
e(y) -8.85 55.64 0.16 595
h(x) 1.72 55.96 -1.82 166
h(x) 2.24 55.96 -1.54 98

β-SnS e(x) 1.84 21.48 0.58 319
e(y) -0.84 21.48 1.54 1516
h(x) 0.75 21.57 -1.83 364
h(x) 2.61 21.57 -1.37 105

We calculate the carrier mobility of the free GaSe and β-SnS monolayers at
the room temperature in the framework of the deformation potential (DP)[6].
Due to the presence of heavy holes, in experiments, the measured hole mobility
of few layered GaSe has small value in the range of 0.1 to 0.6 cm2V−1s−1[7],
while the predicted electron mobility of GaSe monolayer by using the Boltz-
mann transport equation (BTE) is about 500 cm2V−1s−1[8]. It is clear that the
electron mobility ( 600) of the GaSe monolayer is close to the reported value
via solving the BTE. The hole mobilities of two different monolayers have the
similar values due to the relatively large hole effective masses, which are less
than the values of the electron mobility. Note that the electron mobility along y
direction of the β-SnS monolayer is about 1500 cm2V−1s−1, which is obviously
larger than the value ( 300) along the x direction, originating from the relative
small DP constant in y direction.
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Table S2: The Phonon modes and frequency of the β-SnS monolayer
E : 207 cm−1 E : 207 cm−1 A1 : 317 cm−1
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Figure S3: The bright bound excitons wave function in reciprocal space, cor-
responding to the sharp peaks labeled I, II, and III in Fig. 5(b). Note that
the mixed type excitons does not locate exactly at the Γ point but near the
degenerated saddle points.
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Figure S4: The adsorption configurations of intermediate species involved in the
OER processes around the Ga vacancy (The virtual Ga atom circled with a red
dotted line) (a) and in HER processes around the S vacancy (circled with a red
dotted line) (b). Here, the green ball stands for H atom, red ball denotes O
atom.
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1.3 The description of OER and HER

OER process could be decomposed into four elementary oxidation steps, as
follow:

∗+H2O −→ ∗OH +H+ + e−

∗OH −→ ∗O +H+ + e−

∗O +H2O −→ ∗OOH +H+ + e−

∗OOH −→ ∗+O2 +H+ + e−

where the * is the absorption site on the surface, and *OH, *OOH, and *O cor-
respond to the radical adsorbed on the surface. The Gibbs free energy changes
(∆G) can be calculated through the following equations :

∆G1 = 0.5G(H2) +G(∗OH)−G(∗)−G(H2O)−∆pH − Uh

∆G2 = 0.5G(H2) +G(∗O)−G(∗OH)−∆pH − Uh

∆G3 = 0.5G(H2) +G(∗OOH) −G(∗O)−G(H2O)−∆pH − Uh

∆G4 = 0.5G(H2) +G(∗) +G(O2)−G(∗OOH)−∆pH − Uh

where G(*H+e−) is replaced by 0.5G(H2). Noted that the effect of pH value of
solvent and external potential Uh have been considered.

Meanwhile, HER process could be decomposed into two one-electron steps
with each step consuming a proton and an electron:

∗+H+ + e− −→ ∗H

∗H +H+ + e− −→ ∗+H2

which the corresponding Gibbs free energy changes can be writen as:

∆G1 = G(∗H)−G(∗)− 0.5G(H2) + ∆pH + Ue

∆G2 = G(∗) + 0.5G(H2)−G(∗H) + ∆pH + Ue

where the Ue is the external potential for photogenerated electrons.
To simulate the OER(HER) processes occurring around the Ga(S) vacan-

cy, we adopte 4×4×1 supercell with single-Ga(S) vacancy. We also examine if
the two atoms (Ga-S) vacancy in the heterojunction affecting the the electronic
structure or not. We calculate the PDOS of pristine heterojunction and dou-
ble atomic vacancy defects in the 7×7×1, where the distance between the Ga
vacancy and S vacancy is larger than 12 Å. The PDOS of pristine and Ga-S
vacancy heterojunction shown in Fig. S5, we find that the Ga-S vacancy gives a
tiny changes of electronic structure, which shall not be effect the photocatalytic
water splitting.
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Figure S5: The PDOS of pristine and Ga-S double atomic vacancy defects in
heterojunction at PBE level
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