Supporting Information

Chemical etching induced microporous nickel backbones decorated with metallic Fe@ hydroxide nanocatalysts: An efficient and sustainable OER anode toward industrial alkaline water splitting

Nabeen K. Shrestha^{*a}, Supriya A. Patil^b, Jonghoon Han^a, Sangeun Cho^a, Akbar I. Inamdar^a, Hyungsang Kim^{*a}, Hyunsik Im^{*a}

^aDivision of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea.
^bDepartment Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea.
**Corresponding authors*: nabeenkshrestha@hotmail.com, hskim@dongguk.edu, hyunsik7@dongguk.edu

SI-1:

The standard reduction electrode potential E_{Fe3+/Fe0} is calculated as follows.

 $Fe^{2+} + 2e^{-} \rightarrow Fe$ (1), $E_1^0 = -0.44 V$

 $Fe^{3+} + e^{-} \rightarrow Fe^{2+}$(2), $E_2^0 = 0.77 V$

 $(E_1^0 \text{ and } E_2^0 \text{ values were taken from the electrochemical series})$

Adding equation (1) and (2)

 $Fe^{3+} + 3e^- \rightarrow Fe$(3), E_3^0

Let, ΔG_1 , ΔG_2 and ΔG_3 are the free energies of the reaction (1), (2) and (3).

Then, $\Delta G_1 + \Delta G_2 = \Delta G_3$(4)

Here, $\Delta G = -nE^0F$ (5), where n = number of electron involved in the electrode reaction, E^0 = standard electrode potential in volt, and F = Faraday constant.

Hence, from (1), (2), (4) and (5):

 $-2 \times F \times (-0.44) + 1 \times F \times 0.77 = -3 \times F \times E_3^0$

As a result: $E^{0}_{Fe3+/Fe} = E_{3}^{0} = +0.037 V.$

Figure 1. Images of Ni foam (a) before and after immersion of the foam in an ethanolic $FeCl_3$ solution at 50 °C for (b) 6 h, (c) 12 h, (d) 18 h, and (e) 24 h.

•

Figure S2. SEM images showing a surface view of (a) pristine NF, (b) pristine NF under high magnification, and NF in an ethanolic FeCl₃ solution at 50 °C for (c) 6 h (Fe-6h/NF) under (d) high magnification, (e) 12 h (Fe-12h/NF) under (f) high magnification, (g) 18 h (Fe-18h/NF) under (h) high magnification, and (i) 24 h (Fe-24h/NF) under (j) high magnification. The inset image in (a) presents the NF under high magnification showing the crystal grain boundaries.

Figure S3. (a) XPS survey spectrum of etched NF (Fe-18h/NF) in ethanolic FeCl₃ at 50 °C, and (b) Cl 2p spectrum of the same sample.

Figure S4. *iR* compensated linear sweep voltammograms of the etched NF (Fe-18h/NF) in 1 M KOH solution.

Figure S5. Normalized chronopotentiometric curves obtained at an applied current density of 350 mAcm⁻² in a 1 M KOH aqueous electrolyte from (a) Fe-18h/NF and (b) Fe-24h/NF electrodes.

Figure S6. Cyclic voltammograms (CVs) of etched NF at various scan rates in a 1 M KOH solution: (a) Fe-6h/NF, (b) Fe-12h/NF, (c) Fe-18h/NF, and (d) Fe-24h/NF. (e) Average current

density $(\Delta j = (j_a \cdot j_c)/2)$ against the scan rate showing the double-layer capacitance (C_{dl}) extracted from the corresponding CVs. (f) *iR* compensated LSVs based on the ECSA-specific current density in a 1M KOH solution. (g) Table showing the electrochemically active surface area (ECSA) in cm².

The double layer capacitance (C_{dl}) was determined from a CV using the equation: $C_{dl} = \Delta j (j_a j_c)/2\nu$, where j_a and j_c are anodic and cathodic current densities at $\Delta E = 0.2$ V and v is the scan rate in mVs⁻¹. The non-Faradic current density based electrochemically active surface area (ECSA) was estimated according to the equation: ECSA = C_{dl}/C_s , where C_s is the specific capacitance of the electrode and was taken as 0.022 mFcm⁻² in 1 M KOH electrolyte.^[1] ECSA, thus, estimated are tabulated in Fig. "(g)".

[1] J. Am. Chem. Soc. 2013, 135, 45, 16977.

Figure S7. Electrochemically active surface area (ECSA) and OER current density (j_{OER}) exhibited by the nickel foam etched for 6, 12, 18 and 24 h in ethanolic FeCl₃ solution at 50 °C.

Figure S8. CV curves recorded in the non-Faradic regions of (a) NF, (b) Fe-18h/NF, (c) Fe-24h/NF, and (d) IrO₂/NF, in a 1 M KOH solution at various scan rates (20 to 80 mV s⁻¹). (e) Average non-Faradaic current density ($\Delta j = (j_a - j_c)/2$) obtained from CV curves at 0.20 V as a function of the scan rate, and (f) a comparison with the ECSA.

Figure S9. (a) Nyquist plot derived from the electrochemical impedance spectra, (b) the equivalent circuit employed to fit the impedance data, and (c) the table showing the series resistance (R_s) and charge transfer resistance (R_{ct}) extracted from the Nyquist plot.

Figure S10. (a) CV of the Fe-18h/NF electrode in a 1 M KOH solution at a scan rate of 5 mVs⁻¹ showing a pair of reversible redox peaks for M–OH \leftrightarrow M–OOH, where the current density in the anodic (j_a) and the cathodic (j_c) directions are almost equal. (b) Chronopotentiometric response of the Fe-18h/NF electrode in a 1 M KOH solution at the beginning and end of 80 h under periodic polarization between +400 and -40 mAcm⁻².

Figure S11. Faradic current efficiency for the HER and OER of the Fe-18h/NF electrode measured at 25 mAcm⁻² in a 30% KOH aqueous electrolyte using conventional water displacement. The active electrode area of the cathode and anode was 1.5 cm⁻².

Figure 12. XPS spectra for the Fe-18h/NF electrode after stability testing for 96 h in a 30 wt% KOH solution.

Figure. S13. Raman spectra for the Fe-18h/NF electrode before (i.e., as-synthesized) and after

electrochemical stability testing. The pair of peaks observed after stability testing indicates the presence of the NiOOH-FeOOH (MOOH) phase.

Figure. S14. XRD patterns and an SEM surface view of the Fe-18h/NF electrode after stability testing for 96 h in a 30 wt% KOH solution. Inset image in "(b)" is a low magnification of the same electrode.

Figure S15. High-angle annular dark-field (HAADF) image and elemental mappings showing the uniform distribution of the constituent Ni, Fe, and O within the Fe-18h/NF electrode after stability testing for 96 h in a 30 wt% KOH solution.

Table S1. Comparison of OER performance for Fe-18h/NF and Fe-24h/NF with those of stateof-the art electrocatalysts under alkaline conditions.

	Anode materials	Electrolyte	j	Overpotential	Tafel slope	Ref
			(mAcm ⁻²)	(mV)	(mVdec ⁻¹)	
1	Fe-18h/NF	1 M KOH	10	220	47.3	This
			50	247		work
			100	270		
			250	290		
			500	310		
	Fe-24h/NF		10	215		
			50	245		
			100	270		
			250	300		
			500	330		
	IrO ₂ /NF		10	260		
			50	310		
			100	330		
			250	380		

	1			1	
		375	390		
2	5h-A-NF	500	346	62.2	[1]
3	0.14 M Fe/A-NF	50	244	69.6	[2]
		500	334		
4	NiO/NiNDs@NF	50	360	90.0	[3]
5	Inverse-NP	10	300	90.0	[4]
		50	362		
6	Ni-CLPs0°, activated	10	204	-	[5]
		100	300		
7	NFN-MOF/NF	10	240	58.8	[6]
		250	335		
		500	360		
8	NiFe/NiCo ₂ O ₄ /NF	10	240	38.8	[7]
		500	310		
9	MFN-MOFs(2:1)/NF	50	235	55.4	[8]
		500	294		
10	Ni-QDs@NC@rGO	10	265	65.0	[9]
11	Fe-O-Ni(OH) ₂ /NF	10	185		[10]
		100	220		
		500	261		
12	NiFeOx/NF	100	260	28.0	[11]
13	Ni-Fe NP/CFP	10	210	-	[12]
		20	230		
		100	270		
14	NiFe-LDH/Mxene/NF	10	229	44.0	[13]
		500	300		
15	Hier-NiFe@sCNTs	30	209	65.7	[14]
		100	279		_
		500	321		
16	so-Fe-Ni(OH) ₂ TTAs	10	226	35.9	[15]
17	Ru-NiFe-P	50	227	66.1	[16]
		100	242		_

SI-References

- Y.J. Son, K. Kawashima, B.R. Wygant, C.H. Lam, J.N. Burrow, H. Celio, A. Dolocan, J.G. Ekerdt, C.B. Mullins, *ACS Nano*. 2021, *15*, 3468.
- [2] X.F. Chuah, C.T. Hsieh, C.L. Huang, D. Senthil Raja, H.W. Lin, S.Y. Lu, ACS Appl. Energy Mater. 2019, 2, 743.
- [3] H. Yu, T. Quan, S. Mei, Z. Kochovski, W. Huang, H. Meng, Y. Lu, Nano-Micro Lett. 2019, 11, 41.
- [4] R. Ding, S. Cui, J. Lin, Z. Sun, P. Du, C. Chen, Catal. Sci. Technol. 2017, 7, 3056.

- [5] F. Rieck genannt Best, J. Koch, G. Lilienkamp, F. Körkemeyer, H.J. Maier, J. Caro, K. Lange, Int. J. Electrochem. 2018, 2018, 9875438.
- [6] J. Duan, S. Chen, C. Zhao, *Nat. Commun.* **2017**, *8*, 15341.
- [7] C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater. 2016, 26, 3515.
- [8] D. Senthil Raja, H.W. Lin, S.Y. Lu, *Nano Energy*, **2019**, *57*, 1.
- [9] Z. Chen, H. Xu, Y. Ha, X. Li, M. Liu, R. Wu, Appl. Catal. B Environ. 2019, 250, 213.
- [10] D. Zhong, L. Zhang, C. Li, D. Li, C. Wei, Q. Zhao, J. Li, J. Gong, J. Mater. Chem. A. 2018, 6, 16810.
- [11] J. Wang, L. Ji, Z. Chen, ACS Catal. 2016, 6 (2016) 6987.
- [12] B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, *Nat. Commun.* 2019, 10, 5599.
- [13] M. Yu, Z. Wang, J. Liu, F. Sun, P. Yang, J. Qiu, Nano Energy, 2019, 63, 103880.
- [14] S.H. Ahn, A. Manthiram, *Small*, **2020**, *16*, 2002511.
- [15] Z.-X. Shi, J.-W. Zhao, C.-F. Li, H. Xu, G.-R. Li, *Appl. Catal. B Environ*, 2021, 298, 120558.
- [16] M. Qu, Y. Jiang, M. Yang, S. Liu, Q. Guo, W. Shen, M. Li, R. He, Appl. Catal. B Environ, 2020, 263, 118324.