Supporting Information

Crosslinked Xylose-Based Polyester as a Bio-Derived Solid Polymer Electrolyte for Li⁺-Ion Conduction

Matthew Oshinowo, James R. Runge, Marco Piccini, Frank Marken and Antoine Buchard*

Department of Chemistry, Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, UK

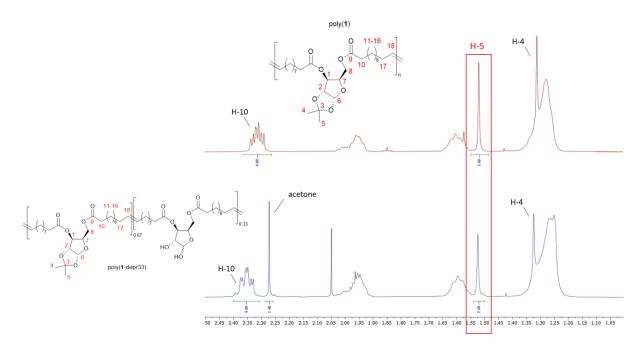
Email: a.buchard@bath.ac.uk

Contents

1. Calculation of theoretical molar mass

The theoretical molar mass ($M_{n,theo}$) of poly(1) was determined using a version of the Carothers equation:

$$M_{\rm n,theo} = {\rm MW_{repeat\,unit}} \times \left(\frac{(1+{\rm r})}{(1+{\rm r})-(2\times{\rm r})\times{\rm conv.}}\right)$$
 (Equation 1)


$$r = \left(\frac{n_1}{n_1 + 2(n_{\text{cat}} + n_{\text{mod}})}\right)$$
 (Equation 2)

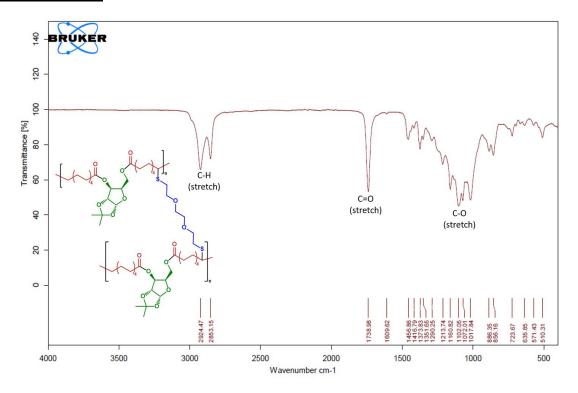
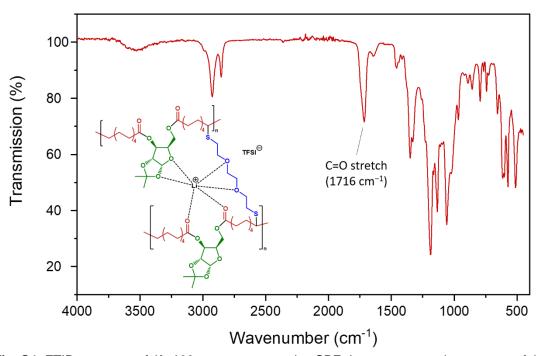
where n_1 is the number of moles of monomer 1, n_{cat} is the number of moles of G-II or HG-II, and n_{mod} is the number of moles of methyl 10-undecenoate.

2. NMR spectra

Fig. S1: Zoomed in ¹H NMR spectra of poly(**1**) in CDCl₃ before and after crosslinking with an excess (10 equivalents) of EDDET (neat, 2 hours, 70 °C, 365 nm).

Fig. S2: Zoomed in ¹H NMR spectra of poly(**1**) and poly(**1**-depr33) in CDCl₃ showing the reduction in relative integration of the isopropylidene methyl peak upon deprotection of OH group. Acetone peak is present as the by-product of OH deprotection.

3. FTIR spectra

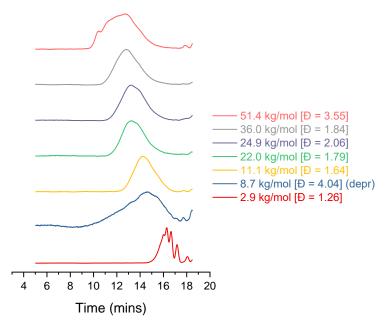
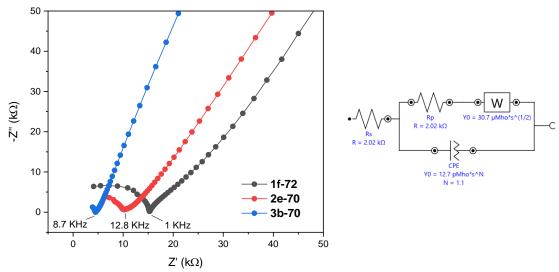

Fig. S3: FTIR spectrum of poly(1-EDDET).

Fig. S4: FTIR spectrum of **1b-100** as a representative SPE. Inset structure shows some of the possible Li⁺-ion coordinating sites in the crosslinked polymer.


4. Size-exclusion chromatography (SEC)

All M_n values refer to poly(1) or poly(1-depr33) prior to crosslinking.

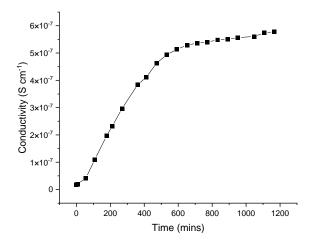


Fig. S5: Stacked SEC traces of selected samples of poly(1) and poly(1-depr) from Table 1. Samples were prepared THF (1-2 mg mL⁻¹) which was also used as the mobile phase for separation through the column. Detection was achieved using a refractive index method and the system calibrated with polystyrene standards. The blue trace represents the chromatogram for poly(1-depr) for which 33% of the protecting ketal groups have been removed to reveal OH groups on the xylose core.

5. Electrochemical impedance spectroscopy (EIS)

Fig. S6: Nyquist plots of representative SPEs based on poly(1-EDDET) measured in the frequency range of 0.1 Hz - 0.5 MHz. An example Randles circuit fitting for **3b-70** is shown on the right where R_p is equivalent to the bulk resistance R_b . For reference, the frequency corresponding to R_b is shown at the intersection of the semi-circle and straight line due to Warburg diffusion on the Nyquist plot.

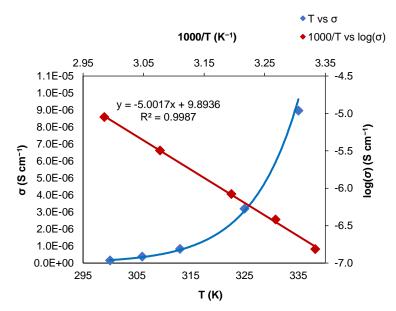


Fig. S7: Chart showing the conductivity hysteresis of SPE **1f-100** ($M_{n,SEC} = 2.9 \text{ kg mol}^{-1}$, salt molarity = 100 mol%, 1.0 EDDET equivalents) measured over 12 hours at 68 °C.

6. Conductivity normalisation

Table S1: Example of raw data used for the temperature normalisation to 60 °C for **1a-72**.

Т	Т	1000/T	R ₀	σ	log(σ)
(°C)	(K)	(K ⁻¹)	(Ω)	(S cm ⁻¹)	(S cm ⁻¹)
27	300	3.33	7.64 × 10 ⁻⁵	1.5 × 10 ⁻⁷	-6.8
33	306	3.27	3.08 × 10 ⁻⁵	3.8×10^{-7}	-6.4
40	313	3.19	1.41 × 10 ⁻⁵	8.4×10^{-7}	-6.1
52	325	3.08	3.68 × 10 ⁻⁴	3.2×10^{-6}	-5.5
62	335	2.99	1.31 × 10 ⁻⁴	9.0×10^{-6}	-5.0

Fig. S8: Plot of raw conductivity data and Arrhenius plot of **1a-72** used for temperature normalisation to 60 °C.

The following derivation of a linear equation was used to normalise the conductivity of each sample to 60 °C:

$$\sigma = 10^{(m \times (1000/T) + c)}$$
 (Equation 3)

where m and c are equal to the gradient and y-intercept of the straight line in Fig. S8, and T is equal to 333 K.

Table S2: Normalisation of conductivity to 60 °C for **1a-72** using the plotted data in Fig. S8.

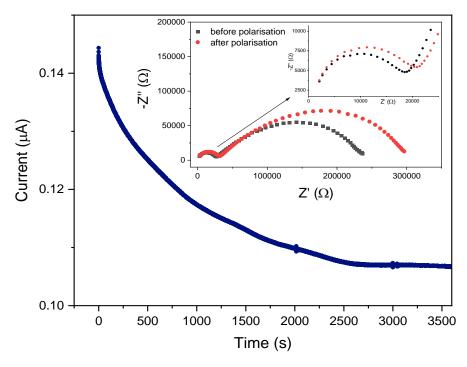
Slope (S cm ⁻¹ K ⁻¹)	-5.0017
x-intercept (K)	9.8936
Normalisation temperature (K)	333
σ at 60 °C (S cm ⁻¹)	7.5×10^{-6}

7. Lithium transference number (t+)

Table S3: Data used for the determination of t_+ for **2e-70** (Fig. 4B).

Repeat	I ₀ (A)	I ss (A)	R _{b,0} (Ω)	R _{b,SS} (Ω)	t,
1	5.188 × 10 ⁻⁸	4.348 × 10 ⁻⁸	57820	61782	0.80
2	4.810 × 10 ⁻⁸	4.152 × 10 ⁻⁸	57183	61994	0.84
3	4.553 × 10 ⁻⁸	4.043×10^{-8}	58383	61536	0.87
4	4.224 × 10 ⁻⁸	3.580×10^{-8}	59118	74330	0.87
5	3.760 × 10 ⁻⁸	3.062 × 10 ⁻⁸	61459	83553	0.84
					0.84 (±0.01)

 t_{+} was calculated using the Bruce-Vincent equation: $t_{+} = \frac{I_{\rm SS}(\Delta V - I_{0}R_{\rm b,0})}{I_{0}(\Delta V - I_{\rm SS}R_{\rm b,SS})}$

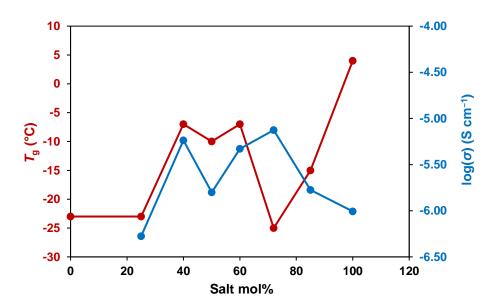

where: l_0 = current prior to DC polarisation

Iss = steady-state current

 $R_{b,0}$ = bulk resistance determined from an EIS measurement prior to DC polarisation

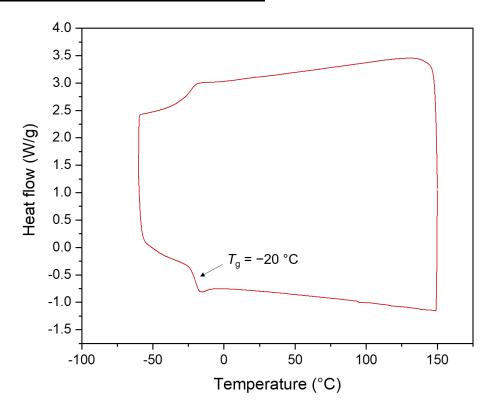
 $R_{b,SS}$ = bulk resistance determined from an EIS measurement after steady-state current is reached

 ΔV = polarisation potential (= 0.01 V)


Fig. S9: Additional chronoamperometry and Nyquist plot (inlayed) obtained for a representative SPE sample ($M_{\rm n}$ 12.4 kg/mol, 70 mol% LiTFSI, 0.05 equivs EDDET, $T_{\rm g}$ = 9 °C). A 10 mV polarization voltage was applied for 1 hour in a symmetrical Li|SPE|Li cell. The Nyquist plot was obtained by EIS recorded in the frequency range of 0.1 Hz – 1 MHz before and after the chronoamperometry experiment. A $t_{\rm h}$ value of 0.66 was determined using the Bruce-Vincent equation.

8. Oligomeric SPE study

Table S4: Conductivity data for SPE films based on an oligomeric sample of poly(1).


Entry	SPE reference	M n,sec ^a (kg mol ⁻¹)	Crosslinker equivalents ^d	Salt mol% ^b [wt%] ^c	7 g ^e (°C)	Conductivity ^f (S cm ⁻¹)
1	1f-0	2.9	1.0	0 [0]	-23	_
2	1f-25	2.9	1.0	25 [15]	-23	5.3 × 10 ⁻⁷
3	1f-40	2.9	1.0	40 [23]	-7	5.8 × 10 ⁻⁶
4	1f-50	2.9	1.0	50 [29]	-10	1.6 × 10 ⁻⁶
5	1f-60	2.9	1.0	60 [35]	-7	4.7 × 10 ⁻⁶
6	1f-72	2.9	1.0	72 [42]	-25	7.5 × 10 ⁻⁶
7	1f-85	2.9	1.0	85 [49]	-15	1.7 × 10 ⁻⁶
8	1f-100	2.9	1.0	100 [58]	4	9.8 × 10 ⁻⁷

^a Refers to molar mass of poly(1) prior to crosslinking. ^b Salt mol% calculated as a percentage of moles of salt relative to total number of polymer repeat units moles present. ^c Salt wt% is in reference to the polymer mass prior to crosslinking. ^d Calculated as ratio of EDDET mols to total number of polymer repeat units moles present. ^e Obtained from the second cooling and heating cycle on the DSC thermogram. ^f Normalised to 60 °C using linear regression of an Arrhenius plot of 1000/T vs log(σ).

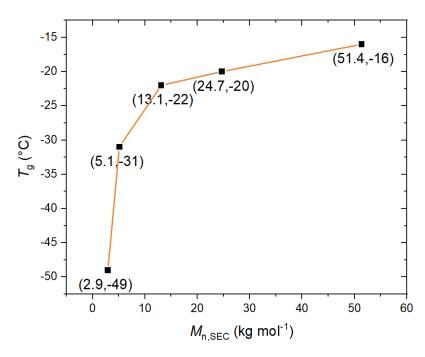
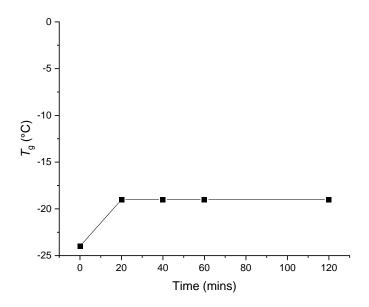
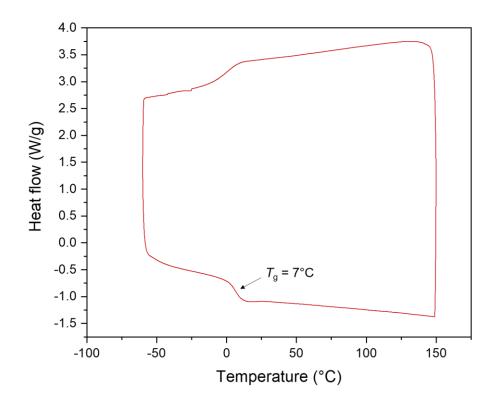


Fig. S10: Chart of T_g and conductivity vs salt molarity for oligomeric samples of poly(1) crosslinked with 1.0 EDDET equivalents.


9. Differential scanning calorimetry (DSC)


Fig. S11: Representative DSC thermogram showing the second cooling and heating cycle of a sample of poly(1) (Table 1, entry 5; $M_{n,SEC} = 24.7 \text{ kg mol}^{-1}$). $T_g = -20 \text{ °C}$.

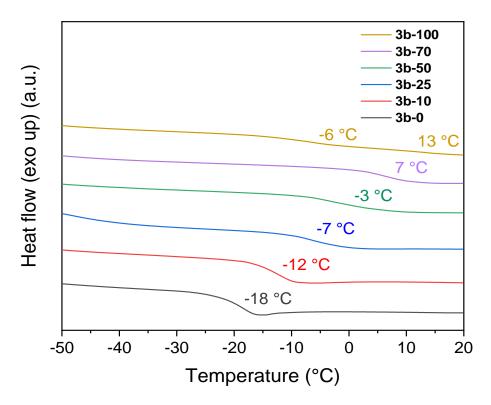

Fig. S12: Plot of molecular weight vs T_g obtained from the second heating cycle in the DSC thermogram for samples of poly(1).

Fig. S13: Chart showing the rate of crosslinking as determined by the increase in T_g of poly(1). $M_{n,SEC}$ = 24.7 kg mol⁻¹, salt molarity = 0 mol%, crosslinker equivalents = 0.05.

Fig. S14: Representative DSC thermogram of an SPE (**3b-70**) showing the second cooling and heating cycle (Table 2, entry 9; $M_{n,SEC}$ = 24.9 kg mol⁻¹, crosslinker equivalents = 0.05, salt amount = 70 mol%). $T_g = 7$ °C.

Fig. S15: Plot showing the second heating cycle traces obtained from the DSC thermograms of SPEs **3b-x** with varying amounts of LiTFSI (traces are y-offset and zoomed into *T*g region for clarity).

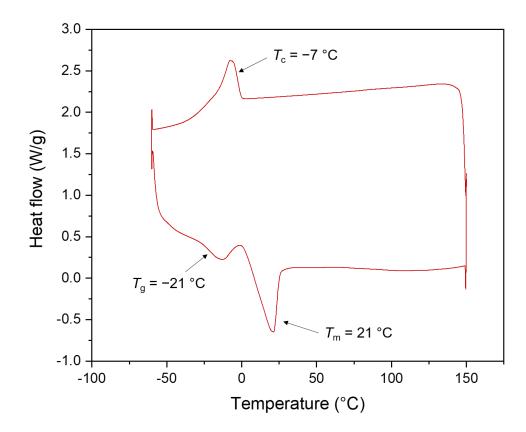


Fig. S16: Second cooling and heating cycle in the DSC thermogram of poly(1-depr33). $T_g = -21$ °C, $T_m = 21$ °C.

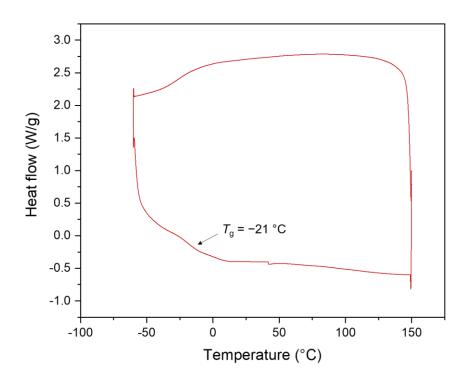
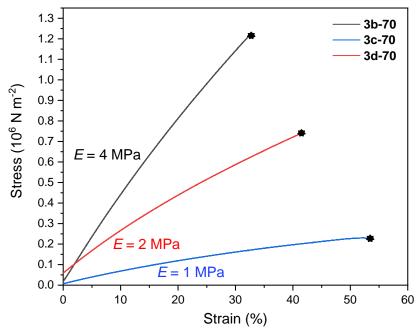



Fig. S17: Second cooling and heating cycle in the DSC thermogram of 5b(depr)-70. $T_g = -21$ °C.

10. Uniaxial tensile strength testing

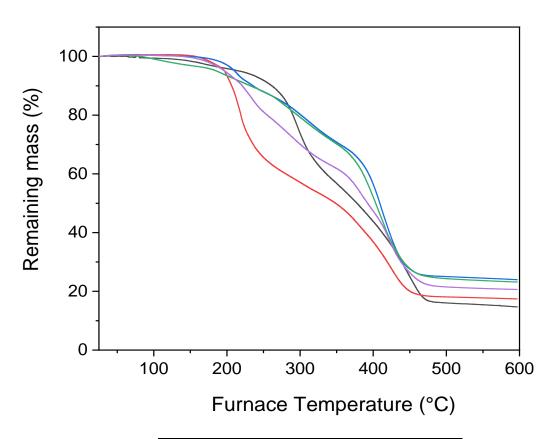


Fig. S18: Stress-strain plot demonstrating the uniaxial strength performance of three SPE's with a crosshead speed of 1 mm min⁻¹. The black spots represent the break point. E = Young's modulus.

Fig. S19: Photograph of the uniaxial tensile strength apparatus setup. Samples were cut into dimensions of approximately 4 mm \times 20 mm and clamped between 50 N pneumatic grips. The exposed sample had a starting length of 20 mm.

11. Thermogravimetric analysis (TGA)

	T _{d1} (°C)	T _{d2} (°C)
poly(1-EDDET)	297	451
1f-72	219	424
2e-70	234	423
3b-70	213	410
5b-(depr)70	295	416

Fig. S20: TGA trace poly(1) ($M_{n,SEC} = 13.1 \text{ kg mol}^{-1}$) crosslinked with 10 equivalents of EDDET (black) and representative SPE samples (T_{d1} and T_{d2} refer to temperatures for the maximum of the derivative peaks).