Understanding the Water Molecule Effect in Metal-Free B-Based

Electrocatalyst for Electrochemical CO₂ Reduction

Yuxiao Meng^b, Zhangmeng Xu^a, Zhangfeng Shen^a, Qineng Xia^a, Yongyong Cao^{*a}, Yangang Wang^{*a}, Xi Li^{*a}

- a. College of Biological, Chemical Science and Engineering Jiaxing University, Jiaxing, Zhejiang, 314001 (P. R. China).
- b. Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032 (P. R. China)

Fig. S1 (a) The free energy diagram of the CO_2 reaction to CH_3OH , CH_4 and CO on the B@Bi surface by RPBE functional. (b) The free energy diagram of the CO_2 reaction to CH_2CH_2 and CH_3CH_2OH on the B₂@Bi surface by RPBE functional.

All intermediates of the CO₂RR pathways on B@Bi and B₂@Bi catalysts were optimized using revised Perdew-Burke-Ernzerh (RPBE) functional. As shown in Fig. S1a and b, the first proton-electron transfer step to *COOH formation with RPBE is energetically uphill by 0.28 eV on B@Bi, respectively. The *CO intermediate would be further hydrogenated to form *OCH species or *COH intermediate, respectively. The energy barriers are 0.78 eV and 2.28 eV, respectively. Consequently, the *OCH formation is more profitable than *COH formation. Subsequently, the further hydrogenation of *OCH to form *OCH₂, *OCH₃ and *O+CH₄ products. The reaction path for CH₄ formation is more favorable than CO and CH₃OHon B@Bi catalyst and the rate-determining step is the *OCH formation with an energy barrier of 0.78 eV. Similar to B@Bi catalyst, the absorbed two CO₂ captures H proton and generates the intermediate *COOH with energetically uphill of 0.83 eV. The *COOH protonation process occurs to form the *CO specie by -0.91 eV. The *COCOH product can be formed following *CO protonation and C-C coupling with a barrier of 2.33 eV. While the adsorbed CO₂ is still more likely to generate CH₂CH₂ on the B₂@Bi catalyst due to the steric hindrance make the *CH₂CH₂O specie formation energetically downhill by -0.42 eV. The generation of *COCOH is considered as the rate-determining step with a free energy value of 2.33 eV. The selectivity of the two pathways on B@Bi and $B_2@Bi$ have been estimated by calculating the limit-potential. The results indicates that the trends of selectivity for products unaltered. The U_L value for the CH₄ formation by *OCH hydrogenation is -0.78 V, while the value for the CH₄ and CH₃OH products following *COH hydrogenation is -2.28 V using RPBE functional. For $B_2@Bi$ catalyst, the U_L value for the CH₂CH₂ and CH₃CH₂OH products is -2.33 V. As a result, the selective evaluation for CH₄ and CH₂CH₂ products by RPBE functional are consistent with the PBE functional.

Table S1. The free energy difference of the elementary reaction by PBE and RPBE functional on B@Bi catalyst.

Elementary steps	PBE/AG (eV)	RPBE/ΔG (eV)
$*+CO_2+H^++e^- \rightarrow *COOH$	-0.46	0.28
$*COOH+H^++e^- \rightarrow *CO+H_2O$	-0.09	-0.36
$*CO+H^++e^- \rightarrow *COH$	2.23	2.28
$*COH+H^++e^- \rightarrow *C+H_2O$	0.16	-0.07
$*C+H^++e^- \rightarrow *CH$	-0.36	-0.42
$*CH+H^++e^- \rightarrow *CH_2$	-1.39	-1.47
$*CH_2+H^++e^- \rightarrow *CH_3$	-0.25	-0.34
$*CH_3+H^++e^- \rightarrow *CH_4$	0.67	0.58
$*COH+H^++e^- \rightarrow *CHOH$	-1.39	-1.46
$^{*}\mathrm{CHOH}^{+}\mathrm{H}^{+}\mathrm{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	-0.04	-0.15
$^{*}\mathrm{CH}_{2}\mathrm{OH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{OH}$	0.28	0.29
$*CO+H^++e^- \rightarrow *OCH$	0.82	0.78
$^{*}\mathrm{CHO+H^{+}+e^{-}} \rightarrow ^{*}\mathrm{OCH}_{2}$	0.61	0.56
$*CH_2O+H^++e^- \rightarrow *OCH_3$	-1.40	-1.46
$*CH_3O+H^++e^- \rightarrow *OCH_4$	-0.85	-0.93
$O^+H^++e^- \rightarrow O^+H$	-0.80	-0.88

Table S2. The free energy difference of the elementary reaction by PBE and RPBEfunctional on $B_2@Bi$ catalyst.

Elementary steps	PBE/AG (eV)	RPBE/AG (eV)
$^{*+2CO_{2}+2H^{+}+2e^{-}} \rightarrow 2^{*}COOH$	-0.61	0.83
$2*COOH+2H^++2e^- \rightarrow 2*CO+2H_2O$	-0.45	-0.91
$2*CO+H^++e^- \rightarrow *COCOH$	2.21	2.33
$*COCOH+H^++e^- \rightarrow *COC+H_2O$	0.12	0.04
$*COC+H^++e^- \rightarrow *CHCO$	-1.46	-0.35
$^{*}\mathrm{CHCO+H^{+}+e^{-}} \rightarrow ^{*}\mathrm{CHCHO}$	-0.19	-0.98
$^{*}CHCHO+H^{+}+e^{-} \rightarrow ^{*}CH_{2}CHO$	0.92	0.35
$^{*}\mathrm{CH}_{2}\mathrm{CHO}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{O}$	-0.14	-0.42
$*O+H^++e^- \rightarrow *OH$	-0.91	-1.22
$^{*}\mathrm{CH}_{2}\mathrm{CHO}^{+}\mathrm{H}^{+}\mathrm{+e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}\mathrm{CHO}$	0.58	0.49
$CH_3CHO+H^++e^- \rightarrow CH_3CH_2O$	-1.13	-1.28
$^{*}CH_{3}CH_{2}O+H^{+}+e^{-}\rightarrow ^{*}CH_{3}CH_{2}OH$	1.69	1.56

Fig. S2 Local diagram Bader charge and charge density different (CDD) of the key intermediate *CO. The accumulation and depletion are shown in yellow and blue, respectively. The isosurface value is taken as 0.005 e/Å^{-3} .

Fig. S3 *Ab*-initio molecular dynamics calculation for the conversion of *OH to H_2O molecules under acidic condition on B@Bi catalyst. The color codes are: Bi, purple; B, green; O, red; H, blue.

Fig. S4 The optimized initial and final structure for the CO_2 reduction on B@Bi (a) and $B_2@Bi$ (b) catalyst.

Fig. S5 (a)-(b) The intermediate *COOH adsorbed on B@Bi and B₂@Bi catalysts in 4 H_2O environments. The blue dotted line represents the hydrogen bond. Color codes: Bi, purple; B, green; C, brown; O, red; H, white. The free energy distribution of the CO₂RR primitive steps of (c) B@Bi and (d) B₂@Bi in the water environment.

Two optimal reaction paths on B@Bi (CH₄ path) and B₂@Bi (CH₂CH₂ path) are further selected for exploring 4 H₂O molecule environments to investigate the influence of H₂O molecules on the CO₂RR mechanism (Fig. S5 c and d). The free energy barrier of CO₂RR for both B@Bi and B₂@Bi decreases under the influence of H₂O molecules. On the other hand, the rate-limiting step of CO₂RR on the B@Bi is changed from the formation of the *OCH (in the gas phase) to the *CO (in the 4 H₂O environments). At a zero electrode potential (U= 0 V), the polar intermediate *COOH adsorbed on B atoms can form hydrogen bonds with 4 H₂O molecules in Fig. S5 a and b, resulting in a low hydrogenation barrier. The protonation step of *COOH from the intermediate *CO requires energy barriers of 0.53 eV and 0.88 eV on B@Bi and B₂@Bi, respectively. Therefore, in the CO₂RR, the effect of hydrogen bonding on the stability of different polar intermediates cannot be ignored. According to the ΔG values of 1.40 eV for the *COCOH formation, the C–C coupling is considered significantly favorable to occur in *COCOH on B₂@Bi due to the involvement of H₂O molecules. In the next hydrogenation step, *COCOH is further protonated to *CCO, *CHCO, *CHCHO, *CH₂CHO, and *O+CH₂CH₂ (gas), with ΔG values of 0.33 eV, -0.24 eV, -0.30 eV, 0.33 eV and -0.19 eV, respectively. In addition, the overpotentials of the two CO₂RR mechanisms have been calculated. The B@Bi exhibited low overpotentials of 0.28 V for CH₄ and the overpotential of CH₂CH₂ formation on B₂@Bi is 1.04 V. As a result, hydrogen bond interaction between the intermediates and water molecules promotes CO₂RR protonation.

Fig. S6 Free energy diagrams of HER on B@Bi and B₂@Bi in the gas phase, $4 H_2O$ and $30 H_2O$ environment.

Table.S3 The total energy, the zero-point correction energy (ZPE), and entropy (TS, T=298.15k) of the adsorbed species on B@Bi in the gas phase.

Species	E (eV)	ZPE (eV)	TS (eV)
*COOH	-222.13	0.64	0.19
*CO	-211.65	0.24	0.10
*OCH	-214.49	0.48	0.15
*OCH ₂	-217.69	0.81	0.10
*OCH ₃	-222.85	1.13	0.15
*O+CH ₄	-227.30	1.32	0.22
*OH	-206.29	0.09	0.21
*COH	-213.05	0.44	0.13
*СНОН	-218.28	0.83	0.13
*CH ₂ OH	-222.02	1.11	0.17
*C	-202.39	0.11	0.03
*CH	-206.44	0.37	0.05
*CH ₂	-211.60	0.69	0.06
*CH ₃	-215.58	0.99	0.09

Table.S4 The total energy, the zero-point correction energy (ZPE), and entropy (TS, T=298.15k) of the adsorbed species on $B_2@Bi$ in the gas phase.

Species	E (eV)	ZPE (eV)	TS (eV)
2*CO	-228.96	0.47	0.20
*СОСОН	-230.53	0.79	0.18
*CCO	-234.02	0.99	0.24
*CHCO	-224.97	0.65	0.13
*CHCHO	-228.96	0.99	0.10
*CH ₂ CHO	-231.74	1.25	0.13
*CH ₃ CHO	-234.82	1.54	0.23
*CH ₃ CH ₂ O	-239.79	1.89	0.18
*O+CH ₂ CH ₂	-235.52	1.48	0.18
*OH	-206.86	0.39	0.07

Species	E (eV)	ZPE (eV)	TS (eV)
*COOH	-280.96	0.64	0.14
*CO	-269.82	0.23	0.09
*OCH	-273.16	0.52	0.09
*OCH ₂	-276.39	0.82	0.09
*OCH ₃	-281.01	1.14	0.14
*O+ CH ₄	-285.40	1.32	0.24
*OH	-265.56	0.39	0.04

Table.S5 The total energy, the zero-point correction energy (ZPE), and entropy (TS, T=298.15k) of the adsorbed species on B@Bi in 4 H_2O environmen.

Species	E (eV)	ZPE (eV)	TS (eV)
2*CO	-287.18	0.47	0.19
*COCOH	-289.58	0.79	0.14
*CCO	-292.83	1.06	0.36
*CHCO	-282.61	0.68	0.09
*CHCHO	-286.67	0.10	0.10
*CH ₂ CHO	-290.02	1.26	0.14
*O+CH ₂ CH ₂	-293.84	1.49	0.23
*OH	-265.59	0.38	0.05

Table.S6 The total energy, the zero-point correction energy (ZPE), and entropy (TS, T=298.15k) of the adsorbed species on $B_2@Bi$ in 4 H_2O environmen.

Table.S7 The total energy, the zero-point correction energy (ZPE), and entropy (TS, T=298.15k) of the adsorbed species on B@Bi in 30 H_2O environmen.

Species	E (eV)	ZPE (eV)	TS (eV)
*COOH	-663.35	0.63	0.13
*CO	-652.36	0.23	0.10
*OCH	-655.75	0.51	0.10
*OCH ₂	-659.00	0.82	0.09
*OCH ₃	-663.63	1.15	0.12
*O+ CH ₄	-666.83	1.32	0.24
*OH	-647.37	0.40	0.05

Species	E (eV)	ZPE (eV)	TS (eV)
2*CO	-669.41	0.46	0.23
*СОСОН	-671.98	0.79	0.15
*CCO	-675.36	1.04	0.19
*CHCO	-664.76	0.66	0.10
*CHCHO	-668.95	0.98	0.11
*CH ₂ CHO	-672.37	1.25	0.14
*O+CH ₂ CH ₂	-676.06	1.49	0.24
*OH	-648.34	0.38	0.05

Table.S6 The total energy, the zero-point correction energy (ZPE), and entropy (TS, T=298.15k) of the adsorbed species on $B_2@Bi$ in 30 H_2O environment.