Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

# Supporting Information

Highly stable and uniformly dispersed 1T-MoS<sub>2</sub> nanosheets co-induced by chemical pressure and 2D template method with high supercapacitor performance

Han Li<sup>a,b</sup>, Shuai Lin<sup>\*a</sup>, Hui Li<sup>a,b</sup>, Ziqiang Wu<sup>a,b</sup>, Lili Zhu<sup>a,b</sup>, Changdian Li<sup>a,b</sup>, Xuebin Zhu<sup>\*a,b</sup>, Yuping Sun<sup>a,c,d</sup>

- <sup>a</sup> Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- <sup>b</sup> University of Science and Technology of China, Hefei 230026, People's Republic of China
- <sup>c</sup> High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei
   230031, People's Republic of China
- <sup>d</sup> Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China

\*Corresponding authors E-mail: linshuai17@issp.ac.cn; xbzhu@issp.ac.cn

#### List of Texts, Figures and Tables

- Text S1. Experimental section.
- Text S2. Material characterizations.

Text S3. Electrochemical measurements and Evaluations.

Figure S1. XRD patterns of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-

55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

Figure S2. XRD patterns of 2H-MoS<sub>2</sub>.

Figure S3. Raman spectrum of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

Figure S4. The S 2s XPS surveys of 1T-MWS and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-110.

Figure S5. The Ti 2p XPS surveys of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

Figure S6. FTIR spectra of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-

55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

**Figure S7.** The SEM images of 1T-MWS and the EDS mapping images of Mo, W and S element.

**Figure S8.** The SEM image of  $Ti_3C_2T_x$ .

Figure S9. The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11.

Figure S10. The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55.

**Figure S11.** The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

Figure S12. The SEM images of 1T-MWS/ $Ti_xC_2T_x$  MXene-110 without the ethanedioic acid dehydrate.

Figure S13. The SEM images of 1T-MWS/TixC2Tx MXene-220 without the

ethanedioic acid dehydrate.

**Figure S14.** CV and GCD curves of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

**Figure S15.** The Specific capacitance of all samples at different current densities. **Figure S16.** The EIS of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

Figure S17. The CV curves of all samples.

Figure S18. The GCD curves of all samples.

Figure S19. The b values of 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

Figure S20. The SEM images and XRD pattern of 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-110 electrodes before and after long-term cycling.

Figure S21. Digital photographs of the symmetric all-solid-state supercapacitors devices bent at different angles of  $0^{\circ}$ ,  $30^{\circ}$ ,  $60^{\circ}$  and  $90^{\circ}$  at 20 mV s<sup>-1</sup>.

Table S1. The specific capacitance of all samples.

 Table S2. The areal capacitance, mass capacitance, energy and power density of the

 ASSSs devices at different current densities.

**Table S3.** Comparisons of energy and power density of 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-110 based flexible ASSSs with those of advanced flexible devices reported recently.

#### **Text S1. Experimental section**

Chemicals: Ammonium molybdate tetrahydrate ((NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O), thiourea (CH<sub>4</sub>N<sub>2</sub>S) and powder of Al (99.9%; -325 mesh) were purchased from Alfa Aesar. Powder of Ti (99.9%; -200 mesh) and HF were purchased from Aladdin. Powder of C, ammonium tungstate hydrate ((NH<sub>4</sub>)<sub>10</sub>W<sub>12</sub>O<sub>41</sub>·xH<sub>2</sub>O), ethanedioic acid dihydrate (C<sub>2</sub>H<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O), anhydrous sodium sulfatewere (Na<sub>2</sub>SO<sub>4</sub>) and potassium chloride (KCl) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). All chemicals were used without any further purification.

Preparation of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene: Ti powder, Al powder and C powder were mixed in a ratio of 3: 1.1: 2, then ball milled for 1 hour to obtain a uniformly mixed powder. The obtained powder was pressed into cylindrical particles with a diameter of 13 mm under the pressure of 1 GPA. Place the particles in a tube furnace at a heating rate of 9°C/minute, heating up to 1000°C, and then heating up to 1400°C Celsius at a heating rate of 5°C/minute for 2 hours under a constant flow of argon. After the sample is cooled to room temperature, it is manually ground and crushed into powder. Add 40% HF slowly to the sample and continue stirring for 24 hours. In the case of centrifugation, repeated washing with deionized water until the pH value of the supernatant exceeded 6, and the resulting black product is placed in a vacuum drying oven for 12 hours.

Preparation of 1T-MWS: 0.2897 g (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O, 1.4209 g CH<sub>4</sub>N<sub>2</sub>S and 0.6240 g (NH<sub>4</sub>)<sub>10</sub>W<sub>12</sub>O<sub>41</sub>·xH<sub>2</sub>O are dissolved in 21.8 ml deionized water and stirred for 30 min. The homogeneous mixture was transferred into a 28 ml Teflon reactor and reacted 210°C for 18 hours, then cool dawn to room temperature. The resulting product

was washed with deionized water and ethanol for several times followed by dying at 60°C at vacuum oven.

Preparation of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene heterostructure:  $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ , CH<sub>4</sub>N<sub>2</sub>S and  $(NH_4)_{10}W_{12}O_{41}\cdot xH_2O$  are dissolved in 21.8 ml deionized water (the usage is consistent with the preparation of 1T-Mo<sub>0.4</sub>W<sub>0.6</sub>S<sub>2</sub>), then 0.2068 g C<sub>2</sub>H<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O and three diffident qualities (0.011, 0.055, 0.11 and 0.22 g) of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> are added into the above mixed solution, kept stirring. The homogeneous mixture was transferred into a 28 ml Teflon reactor and reacted 210°C for 18 hours, then the following process is consistent with the preparation of 1T-MWS.

### Text S2. Material characterizations

XRD spectra were collected on Philips X'pert PRO X-ray diffractometer with Cu K radiation ( $\lambda = 0.15406$  nm). Raman spectra were obtained by a LabRAMHR800 UV NIR spectrometer with 532 nm laser excitation. Fourier transform infrared (FTIR) spectra were obtained on a NEXUS 750 spectrometer using the KBr pellets in the range of 4000-400 cm<sup>-1</sup>. N<sub>2</sub> adsorption/desorption measurements of samples were carried out using ASAP2460 Version 3.01. The specific surface areas were obtained employing BrunauerEmmett-Teller (BET) method. Materials nanostructure characterizations come from Field emission scanning electron microscope (FE-SEM, Quanta 200FEG) and Energy-dispersive X-ray spectroscopy (EDS, Oxford EDS, with INCA software), transmission electron microscope (TEM, JEM-2100) with configured EDS, X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi equipped with monochromatic Al K $\alpha$  source of 1486.6 eV). The HAADF-STEM and corresponding EELS mapping analyses were performed on a JEOL JEM-ARM200F TEM/STEM (200 kV) with a spherical aberration corrector.

## Text S3. Electrochemical measurements and Evaluations

Platinum electrode was used as counter electrode and Ag/AgCl in 1 M KCl electrode as reference electrode. The working electrode is mainly made of electrode material, polyvinylidene fluoride (PVDF) and conductive carbon black (super-p) according to the mass ratio of 8:1:1, and then adding the liquid of N-methylpyrrolidone (NMP) to prepare the slurry, which is obtained on the carbon paper. The area of slurry brush on carbon paper is 1cm<sup>2</sup>, and the loading mass of the electrode material is about 1-2 mg. The electrodes were dried in vacuum oven at 50 °C for 6 hours. Electrochemical data is provided by Dutch Ivium (Vertex.C.DC) electrochemical station in 1M Na<sub>2</sub>SO<sub>4</sub>, so cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) can be obtained.

Preparation of the Na<sub>2</sub>SO<sub>4</sub>/PVA gel: 1 g of PVA was dissolved in 10 ml of deionized water at 90°C. With the continuous evaporation of water, the solution is gelatinous. Add an appropriate amount of 1m Na<sub>2</sub>SO<sub>4</sub> solution and continue to evaporate until it is gelatinous again.

Preparation of the symmetric flexible all-solid-state supercapacitors (ASSSs) devices: The two carbon cloth with brushing similar quality with  $1 \times 1$  cm<sup>2</sup> area of electrode material are placed opposite to each other. Between the two electrodes, a Na<sub>2</sub>SO<sub>4</sub>/PVA gel with uniform thickness is brushed, and a cut cellulose separator is added in the middle. Use the packaging film to package it.



**Figure S1.** XRD patterns of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.



**Figure S3.** Raman spectrum of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.



Figure S4. The S 2s XPS surveys of 1T-MWS and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-110.



Figure S5. The Ti 2p XPS surveys of  $Ti_3C_2T_x$  and 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.



**Figure S6.** FTIR spectra of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.



Figure S7. a-d) The SEM images of 1T-MWS. e) The EDS mapping images of Mo, W and S element.



Figure S8. The SEM image of  $Ti_3C_2T_x$ .



Figure S9. a-b) The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11.



Figure S10. a-b) The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55.



Figure S11. a-b) The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.



Figure S12. a-b) The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-110 without the ethanedioic acid

dehydrate.



Figure S13. a-b) The SEM images of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220 without the ethanedioic acid dehydrate.



**Figure S14.** The CV and GCD curves of 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>x</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

|                                | т: с т  |        | 1T-MWS/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> 1T-MWS/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> |          | 1T-MWS/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | 1T-MWS/Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> |  |
|--------------------------------|---------|--------|-----------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------|------------------------------------------------------|--|
|                                | 113C21x | 11-MW8 | MXene-11                                                                                                  | MXene-55 | MXene-110                                            | MXene-220                                            |  |
| 1 A g <sup>-1</sup>            | 42      | 163    | 204                                                                                                       | 215      | 284                                                  | 163                                                  |  |
| 2 A g <sup>-1</sup>            | 37      | 136    | 140                                                                                                       | 154      | 190                                                  | 110                                                  |  |
| 3 A g <sup>-1</sup>            | 34      | 127    | 124                                                                                                       | 133      | 166                                                  | 95                                                   |  |
| $5 \mathrm{A} \mathrm{g}^{-1}$ | 30      | 116    | 109                                                                                                       | 115      | 145                                                  | 81                                                   |  |
| $7 \mathrm{A} \mathrm{g}^{-1}$ | 27      | 110    | 100                                                                                                       | 102      | 132                                                  | 72                                                   |  |
| 10 A g <sup>-1</sup>           | 24      | 99     | 90                                                                                                        | 90       | 121                                                  | 63                                                   |  |
| 15 A g <sup>-1</sup>           | 19      | 89     | 78                                                                                                        | 77       | 107                                                  | 53                                                   |  |
| 20 A g <sup>-1</sup>           | 15      | 79     | 68                                                                                                        | 66       | 97                                                   | 45                                                   |  |

Table S1. The specific capacitance of all samples.



Figure S15. The Specific capacitance of all samples at different current densities of 1, 2, 3, 5, 7, 10,

15 and 20 A g  $^{-1}.$ 



Figure S16. The EIS of 1T-MWS/ $Ti_xC_2T_x$  MXene-11, 1T-MWS/ $Ti_xC_2T_x$  MXene-55 and 1T-MWS/ $Ti_xC_2T_x$  MXene-220.



Figure S17. The CV curves of all samples.







Figure S19. The b values of 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-11, 1T-1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-55 and 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-220.

| Current     | 1                         | 2                       | 3                         | 5                       | 7                         | 10                      | 15                      | 20                      |
|-------------|---------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|-------------------------|-------------------------|
| density     | mA cm <sup>-2</sup>       | mA cm <sup>-2</sup>     | mA cm <sup>-2</sup>       | mA cm <sup>-2</sup>     | mA cm <sup>-2</sup>       | mA cm <sup>-2</sup>     | mA cm <sup>-2</sup>     | mA cm <sup>-2</sup>     |
| Areal       | 136                       | 123                     | 114                       | 102                     | 93                        | 82                      | 68                      | 57                      |
| capacitance | mF cm <sup>-2</sup>       | mF cm <sup>-2</sup>     | mF cm <sup>-2</sup>       | mF cm <sup>-2</sup>     | mF cm <sup>-2</sup>       | mF cm <sup>-2</sup>     | mF cm <sup>-2</sup>     | mF cm <sup>-2</sup>     |
| Mass        | 64                        | 61.6                    | 57                        | 51                      | 46.6                      | 41                      | 34                      | 28.6                    |
| capacitance | F g <sup>-1</sup>         | F g <sup>-1</sup>       | F g <sup>-1</sup>         | F g <sup>-1</sup>       | F g <sup>-1</sup>         | F g <sup>-1</sup>       | F g <sup>-1</sup>       | F g <sup>-1</sup>       |
| Energy      | 9.3                       | 8.4                     | 7.8                       | 6.9                     | 6.3                       | 5.6                     | 4.6                     | 3.9                     |
| density     | $\mu$ Wh cm <sup>-2</sup> | $\mu Wh \ cm^{-2}$      | $\mu$ Wh cm <sup>-2</sup> | $\mu Wh \ cm^{-2}$      | $\mu$ Wh cm <sup>-2</sup> | $\mu Wh \ cm^{-2}$      | $\mu Wh \ cm^{-2}$      | $\mu Wh \ cm^{-2}$      |
| Power       | 350                       | 700                     | 1050                      | 1700                    | 2400                      | 3500                    | 5200                    | 7100                    |
| density     | $\mu W \text{ cm}^{-2}$   | $\mu W \text{ cm}^{-2}$ | $\mu W \text{ cm}^{-2}$   | $\mu W \text{ cm}^{-2}$ | $\mu W \text{ cm}^{-2}$   | $\mu W \text{ cm}^{-2}$ | $\mu W \text{ cm}^{-2}$ | $\mu W \text{ cm}^{-2}$ |

Table S2. The areal capacitance, mass capacitance, energy and power density of the ASSSs devices at different current densities of 1, 2, 3, 5, 7, 10, 15, 20 mA cm<sup>-2</sup>.



Figure S20. The SEM images and XRD pattern of 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-110 electrodes before and after long-term cycling.



**Figure S21.** Digital photographs of the symmetric all-solid-state supercapacitors devices bent at different angles of  $0^{\circ}$ ,  $30^{\circ}$ ,  $60^{\circ}$  and  $90^{\circ}$  at 20 mV s<sup>-1</sup>.

| Flexible device                                                                                    | Energy and power density                                                                                                                   | Refs.                                                       |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| 1T-MWS/Ti3C2Tx MXene-110<br>1T-MWS/Ti3C2Tx MXene-110                                               | 9.3 μWh cm <sup>-2</sup> at 350 μW cm <sup>-2</sup><br>3.9 μWh cm <sup>-2</sup> at 7100 μW cm <sup>-2</sup>                                | This work                                                   |  |
| RGO/MoS <sub>2</sub> /P-10//RGO/MoS <sub>2</sub> /P-10                                             | 1.44 $\mu$ Wh cm <sup>-2</sup> at 58 $\mu$ W cm <sup>-2</sup>                                                                              | <i>Electrochim. Acta</i> 2020, <b>330,</b> 135205.          |  |
| Laser-induced graphene//<br>laser-induced graphene                                                 | 4.8 $\mu$ Wh cm <sup>-2</sup> at 90 $\mu$ W cm <sup>-2</sup>                                                                               | <i>Electrochim. Acta,</i> 2020, <b>357,</b> 136838.         |  |
| Cu@Ni@NiCoS NFs//<br>Cu@Ni@NiCoS NFs                                                               | 0.48 $\mu Wh~cm^{-2}$ at 11.16 $\mu W~cm^{-2}$                                                                                             | <i>Chem. Eng. J.</i> 2020, <b>395,</b> 125019.              |  |
| MnO2@AuNF//MnO2@AuNF                                                                               | 0.14 μWh cm <sup>-2</sup> at 4 μW cm <sup>-2</sup><br>0.05 μWh cm <sup>-2</sup> at 20 μW cm <sup>-2</sup>                                  | J. Mater. Chem. A<br>2019, <b>7</b> , 10672.                |  |
| Co(OH) <sub>2</sub> /AgNWs//Co(OH) <sub>2</sub> /AgNWs                                             | $0.04~\mu Wh~cm^{\text{-2}}$ at 2.88 $\mu W~cm^{\text{-2}}$                                                                                | ACS Appl. Mater. Interfaces<br>2019, <b>11</b> , 8992-9001. |  |
| $Ti_3C_2T_x$ //carbon nanotube                                                                     | $0.05~\mu Wh~cm^{-2}$ at 2.4 $\mu Wh~cm^{-2}$                                                                                              | <i>Adv. Mater.</i> 2017, <b>29,</b> 1702678.                |  |
| RuO <sub>2</sub> /PEDOT: PSS//PEDOT: PSS                                                           | $0.053~\mu Wh~cm^{-2}$ at 147 $\mu Wh~cm^{-2}$                                                                                             | Nano Energy<br>2016, <b>28,</b> 495-505.                    |  |
| Ag NW/Ni(OH)2-PEIE// PEDOT: PSS                                                                    | $0.074~\mu Wh~cm^{-2}~$ at 3.2 $\mu Wh~cm^{-2}$                                                                                            | Nano Energy<br>2018, <b>53,</b> 650-657.                    |  |
| Interdigitated pattern of graphene//<br>Interdigitated pattern of graphene                         | $0.727~\mu Wh~cm^{-2}$ at 83.4 $\mu Wh~cm^{-2}$                                                                                            | Nano Energy<br>2016, <b>26,</b> 746-754.                    |  |
| MnHCF-MnOx/ErGO//<br>MnHCF-MnOx/ErGO                                                               | 2.3 $\mu$ Wh cm <sup>-2</sup> at 500 $\mu$ W cm <sup>-2</sup>                                                                              | <i>Adv. Energy Mater.</i> 2020, <b>10</b> , 2000022.        |  |
| I-Ti <sub>3</sub> C <sub>3</sub> T <sub>x</sub> // I-Ti <sub>3</sub> C <sub>3</sub> T <sub>x</sub> | 0.63 $\mu$ Wh cm <sup>-2</sup> at 300 $\mu$ W cm <sup>-2</sup>                                                                             | <i>Adv. Funct. Mater.</i> 2018, <b>28,</b> 1705506.         |  |
| Ti <sub>3</sub> C <sub>3</sub> T <sub>x</sub> // Ti <sub>3</sub> C <sub>3</sub> T <sub>x</sub>     | 1.64 $\mu$ Wh cm <sup>-2</sup> at 778.3 $\mu$ W cm <sup>-2</sup>                                                                           | <i>Adv. Mater.</i> 2020, <b>32</b> , 2000716.               |  |
| N-doped carbon nanotube/Polyurethane//<br>N-doped carbon nanotube/Polyurethane                     | 2.16 $\mu$ Wh cm <sup>-2</sup> at 50 $\mu$ W cm <sup>-2</sup>                                                                              | Adv. Energy Mater.<br>2017, <b>7,</b> 1601814.              |  |
| Ni–Co DHs/pen ink/nickel/CF//<br>ink-coated nickel/CF                                              | <ul> <li>9.75 μWh cm<sup>-2</sup> at 492.17 μWh cm<sup>-2</sup></li> <li>3.58 μWh cm<sup>-2</sup> at 1841.1 μWh cm<sup>-2</sup></li> </ul> | ACS Appl. Mater. Interfaces<br>2017, <b>9</b> , 5409-5418.  |  |

Table S3. Comparisons of energy and power density of 1T-MWS/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-110 based flexible ASSSs with those of advanced flexible devices reported recently.