Instability of Ga-substituted Li₇La₃Zr₂O₁₂ toward Metallic Li (supplementary)

Chih–Long Tsai^{a,}, Ngoc Thanh Thuy Tran*^b, *Roland Schierholz*^a, *Zigeng Liu*^a, *Anna Windmüller*^a, *Che-an Lin*^c, *Qi Xu*^{a,d}, *Xin Lu*^{a,d}, *Shicheng Yu*^a, *Hermann Tempel*^a, *Hans Kungl*^a, *Shih-Kang Lin*^{b,c,e}, and *Rüdiger–A. Eichel*^{a,d,f}

^aInstitut für Energie– und Klimaforschung (IEK–9: Grundlagen der Elektrochemie), Forschungszentrum Jülich, D–52425 Jülich, Germany

^bHierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan70101, Taiwan

^cDepartment of Materials Science and Engineering, National Cheng Kung University, Tainan70101, Taiwan ^dInstitut für Materialien und Prozesse für elektrochemische Energiespeicher– und wandler, RWTH Aachen University, D–52074 Aachen, Germany

^eProgram on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan70101, Taiwan

^fInstitut für Energie– und Klimaforschung (IEK–12: Helmholtz–Institute Münster, Ionics in Energy Storage), Forschungszentrum Jülich, D–48149 Münster, Germany

Figure S1. (a) Temperature dependent and (b) high frequency EIS Nyquist plots for $Li_{6.4}Ga_{0.2}La_3Zr_2O_{12}$. The high frequency EIS was measured from 3 GHz to 1 Hz at 20 °C. (c) Arrhenius plot of total conductivities for $Li_{6.4}Ga_{0.2}La_3Zr_2O_{12}$ and $Li_{6.45}Ga_{0.05}La_3Zr_{1.6}Ta_{0.4}O_{12}$. For the sake of readability, total conductivity vs. 1000/T is shown. The activation energies given in the figure were calculated from fitting Arrhenius equation.

Figure S2. (a) $Li_{6,4}Ga_{0,2}La_3Zr_2O_{12}$ pellet get directly reduced by Li after isostatic press. Li electrodes were removed to see the surface of the pellet. (b) (reduced) $Li_{6,4}Ga_{0,2}La_3Zr_2O_{12}$ single crystals after the clean out of black color material using absolute ethanol. (c) reduced $Li_{6,45}Ga_{0.05}La_3Zr_{1.6}Ta_{0.4}O_{12}$ pellet in water. The pellet still holds the sintered body instead of falling apart.

Figure S3. Refinement of reduced $Li_{6.45}Ga_{0.05}La_3Zr_{1.6}Ta_{0.4}O_{12}$ XRD pattern. (a) Fitting with cubic *Ia-3d* garnet while refining the parameter for line broadening left significant intensity contribution unfitted. (b) A more reasonable fit was achieved with the tetragonal phase *I4*₁*acd*.

Figure S4. (A) 2D ⁷Li⁻⁷Li EXSY NMR spectrum of reduced Li_{6.4}Ga_{0.2}La₃Zr₂O₁₂; (B) corresponding chemical exchange build-up curves.

Figure S5. Microstructure of $Li_{6.45}Al_{0.05}La_3Zr_{1.6}Ta_{0.4}O_{12}$. The grain size is much homogeneous than $Li_{6.45}Ga_{0.05}La_3Zr_{1.6}Ta_{0.4}O_{12}$, which has large grain size as big as 500 μ m.

To clarify the role of LiGaO₂ at the grain boundary, a pure phase LiGaO₂ was synthesized for the stability test again metallic Li, figure S6. Here, two methods were used for the stability test, one by attaching LiGaO₂ to Li foil at room temperature and the other by placing LiGaO₂ pellet onto a 250 °C heating plate after attaching Li foil onto it surface, figure S6(b) and movie S2. No noticeable reaction or changing of colour for both Li foil and LiGaO₂ sample at room temperature even after two weeks of storage in glove box. For the sample placing onto a 250 °C heating plate,

it can be seen from the video that $LiGaO_2$ fractured into small pieces when the temperature reaching Li melting point, indicating by the small piece of Li in the coin cell at the first 2 seconds of video. Before the melting point of Li, no noticeable reaction was observed. After the experiment, only the texture of metallic Li was changed but not LiGaO₂. The fracture of LiGaO₂ pellet at Li melting temperature and the change of metallic Li texture indicate that a reaction was ongoing between LiGaO₂ and Li at this temperature, which could be $(x + 1)Li + LiGaO_2 \rightarrow Li_xGa + 2Li_2O$.

Figure S6. (a) XRD refinement for synthesized single phase $LiGaO_2$. (b) $LiGaO_2$ do not show any noticeable reaction when in contact with Li. The sample remains the same even after 30 days in a glove box.

Compound	Space group	E _f (eV/atom)	
$Li_7La_3Zr_2O_{12}$	Ia ³ d	-3.184	
$Li_{6.625}Ga_{0.125}La_{3}Zr_{2}O_{12}$	$Ia\overline{3}d$	-3.185	
$Li_{6.25}Ga_{0.25}La_{3}Zr_{2}O_{12}$	$Ia\overline{3}d$	-3.194	
$Li_{7.25}La_3Zr_2O_{12}$	$Ia^{\overline{3}}d$	-3.145	
$Li_{7,375}La_3Zr_2O_{12}$	$Ia^{\overline{3}}d$	-3.124	
$Li_{7.5}La_{3}Zr_{2}O_{12}$	$Ia^{\overline{3}}d$	-3.106	
Zr ₃ O	R32	-1.581	

Table S1. Calculated formation energies (E_f) of relevant compounds of Li-La-Zr-O-Ga at 0 K.

Zr ₂ O	P312	-2.013
Zr ₄ O	R3	-1.271
ZrO ₂	$P2_1/c$	-3.928
Li ₂ O ₂	P6 ₃ /mmc	-1.670
LiO ₈	Ст	-0.426
Li ₃ LaO ₃	$Pm^{\overline{3}}m$	-2.634
$La_2Zr_2O_7$	$Fd\overline{3}m$	-3.987
Li ₂ ZrO ₃	C2/c	-3.118
$La_4Ga_2O_9$	$P2_1/c$	-3.419
La ₃ Ga ₅ O ₁₂	$Ia\overline{3}d$	-2.927
LiGa ₅ O ₈	P4 ₃ 32	-2.310
LiGaO ₂	Pna2 ₁	-2.388
Li ₅ GaO ₄	Pbca	-2.244
Ga ₂ O ₃	C2/m	-2.262
ZrGa	I4 ₁ /amd	-0.633
Zr ₂ Ga ₃	Fdd2	-0.614
Zr ₂ Ga	I4/mcm	-0.470
Zr ₃ Ga ₂	P4/mbm	-0.547
ZrGa ₃	I4/mmm	-0.489
Zr ₃ Ga ₅	Cmcm	-0.601
La ₅ Ga ₃	P4/ncc	-0.481
LaGa	Cmcm	-0.601
LaGa ₂	P6/mmm	-0.709
LaGa ₆	P4/nbm	-0.367
Li ₅ Ga ₄	$P\overline{3}m1$	-0.340

Li ₂ Ga ₇	Cm	-0.191
LiGa	Fd ³ m	-0.330
Li ₂ Ga	Cmcm	-0.306
Li ₃ Ga ₂	$R^{\overline{3}}m$	-0.333
Li	$R^{\overline{3}}m$	0
La	P6 ₃ /mmc	0
Zr	P6 ₃ /mmc	0
Ga	Cmce	0
O ₂	C2/m	0

The formation enthalpies $({}^{E}f)$ of an A_mB_n compound, representing the energy change when a compound is

formed from its constituent elements in their standard state, is calculated by $E_f[A_mB_n] = \{E[A_mB_n] - m^*E[A] - n^*E[B]\}/(m+n)$ with E is the total ground state energy under DFT calculation.

Table S2.	Thermodynamically favorable reactions could be occured at Li/Ga _{0.25} LLZO interface as shown
	in Figure 5(a) (LLZO is presumed to be a stable phase toward Li).

ID	Interfacial reaction equations	E _r (meV/atom)
	$0.444 \text{ Li}_{6.25}\text{Ga}_{0.25}\text{La}_3\text{Zr}_2\text{O}_{12} + 0.556 \text{ Li} \rightarrow 0.444 \text{ Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$	-63.82
Α	+ 0.111 Li ₂ Ga	
В	$0.45 \text{ Li}_{6.25}\text{Ga}_{0.25}\text{La}_3\text{Zr}_2\text{O}_{12} + 0.55 \text{ Li} \rightarrow 0.4 \text{ Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$	-63.71
	$+ 0.0875 Li_2Ga + 0.0125 Li_3Ga$	
С	$0.5 \text{ Li}_{6.25}\text{Ga}_{0.25}\text{La}_3\text{Zr}_2\text{O}_{12} + 0.5 \text{ Li} \rightarrow 0.5 \text{ Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$	-61.85
	+ 0.5 LiGa	

Table S3. Thermodynamically favorable reactions could be occured at Li/Ga_{0.125}LLZO interface as shown in Figure 5(b) (LLZO is presumed to be a stable phase toward Li).

ID	Interfacial reaction equations	E _r (meV/atom)
Α'	$0.6154\ Li_{6.625}Ga_{0.125}La_{3}Zr_{2}O_{12}+0.3846\ Li$	-36.42
	→ 0.6154 $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12} + 0.0769 \text{Li}_2\text{Ga}$	
ם'	$0.65 \text{ Li}_{6.625}\text{Ga}_{0.125}\text{La}_3\text{Zr}_2\text{O}_{12} + 0.35 \text{ Li} \rightarrow 0.65 \text{ Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$	-35.85
В	$+\ 0.0094 \ Li_3Ga_2 \ +\ 0.0156 \ Li_5Ga_4$	
C'	$0.7 \text{ Li}_{6.625}\text{Ga}_{0.125}\text{La}_3\text{Zr}_2\text{O}_{12} + 0.3 \text{ Li} \rightarrow 0.7 \text{ Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$	-33.67
	$+ 0.0175 \text{ LiGa} + 0.01 \text{ Li}_2\text{Ga}_7$	
Ga _{0.125} LLZO	$Li_{6.625}Ga_{0.125}La_3Zr_2O_{12} \rightarrow 0.9333 Li_7La_3Zr_2O_{12} + 0.0917LiGaO_2$	-14.02
	$+\ 0.0667\ La_2Zr_2O_7 + 0.0167\ La_4Ga_2O_9$	

Supplementary movie S1 and S2 are also available.

Movie S1 shows the real time reducing reaction of $Li_{6.4}Ga_{0.2}La_3Zr_2O_{12}$ when placing it onto a 250 °C heating plate.

Movie S2 shows the real time reaction of LiGaO₂ when placing it onto a 250 °C heating plate.