Supporting information

Anomalous electrochemical capacitance in Mott-insulator titanium sesquioxide

Sumana Kumar^{1†}, Sukanta Nandi^{1†}, Vikash Mishra², Alok Shukla², Abha Misra^{1‡}

¹Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India.

²Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai,

Maharashtra 400076, India.

[†] Both the authors hav [‡] Corresponding author

Figure S1. SEM image of as - purchased granular powder of Ti₂O₃.

Figure S2. XRD spectra of (a) pristine Ti_2O_3 and after annealing at (b) 200 °C, (c) 300 °C and (d) 400 °C.

Figure S3. The change of binding energy for (a) Ti and (b) O as a function of the annealing temperature.

Figure S4. Surface morphology of Ti_2O_3 annealed at (a) 200 °C and (b) 300 °C.

Figure S5. Energy dispersive X ⁻ ray analysis for the samples at (a) RT, annealed at (b) 200 $^{\circ}$ C, (c) 300 $^{\circ}$ C, and (d) 400 $^{\circ}$ C.

Theoretical Details:

All the calculations have been performed within the framework of plane – wave density functional theory (PW – DFT), implemented in the Vienna ab – initio simulation package (VASP).[1,2] A very popular and reliable hybrid functional (i.e. Heyd – Scuseria – Ernzerhof (HSE06)) has been used in the present work, thereby making our results on the bandgap and other electronic properties quite accurate.[3] In these calculations mixing parameter (α) of 25% and a screening parameter of 0.2 Å⁻¹ have been used. To obtain the total charge density for orthorhombic Ti₂O₃, a Monkhorst – Pack scheme has been adopted for self – consistent – field (SCF) calculations employing a coarse grid composed of a 7×7×7 k – point mesh. All the calculations have been done with the experimental value of lattice constants.

Figure S6. (a) Calculated band gap as a function of temperature exhibits a metallic-to-insulator transition around 142 °C. DOS of Ti and O along with TDOS at (b) RT and at (c) 142 °C

Table- S1: Bader charge calculations of Ti atoms in Ti_2O_3

Atoms	RT	152 °C	77 °C	102 °C	127 °C	142 °C	152 °C	177 °C	200 °C	300 °C	400 °C
Ti1	3.001	3.002	3.006	3.026	3.076	3.1	3.113	3.212	3.245	3.259	3.296
Ti2	3.002	3.004	3.008	3.008	3.088	3.131	3.167	3.234	3.267	3.302	3.375
Ti3	3.001	3.006	3.011	3.011	3.112	3.116	3.167	3.271	3.298	3.312	3.412
Ti4	3.001	3.002	3.012	3.052	3.125	3.265	3.298	3.321	3.356	3.378	3.432
Ti5	3.003	3.003	3.045	3.085	3.155	3.378	3.388	3.412	3.423	3.444	3.464
Ti6	3.001	3.004	3.01	3.01	3.01	3.003	3.001	3.002	3.004	3.005	3.001
Ti7	3.002	3.006	3.009	3.009	3.001	3.002	3.001	3.004	3.003	3.005	3.002
Ti8	3.001	3.005	3.002	3.012	3.011	3.006	3.004	3.005	3.006	3.002	3.001
Ti9	3.003	3.009	3.005	3.015	3.009	3.005	3.005	3.007	3.005	3.004	3.003
Ti10	3.001	3.003	3.007	3.017	3.005	3.005	3.006	3.002	3.001	3.004	3.004
Ti11	3.002	3.003	3.006	3.016	3.003	3.001	3.001	3.005	3.002	3.005	3.006
Ti12	3.004	3.004	3.01	3.01	3.01	3.004	3.006	3.008	3.007	3.006	3.007
Ti13	3.001	3.008	3.004	3.014	3.014	3.006	3.011	3.012	3.011	3.01	3.003
Til4	3.002	3.006	3.003	3.013	3.013	3.014	3.013	3.025	3.02	3.019	3.014
Ti15	3.001	3.008	3.005	3.015	3.015	3.009	3.012	3.014	3.016	3.012	3.017
Ti16	3.004	3.004	3.007	3.017	3.017	3.004	3.009	3.011	3.008	3.005	3.012
Ti17	3	3.002	3.048	3.098	3.118	3.153	3.184	3.21	3.234	3.312	3.351
Ti18	3.001	3.001	3.012	3.012	3.112	3.125	3.198	3.32	3.334	3.342	3.41
Ti19	3.001	3.002	3.017	3.017	3.127	3.156	3.178	3.195	3.199	3.226	3.237
Ti20	3.001	3.004	3.053	3.103	3.123	3.217	3.231	3.421	3.434	3.448	3.456
Ti21	3.004	3.004	3.025	3.125	3.145	3.156	3.167	3.256	3.278	3.298	3.378
Ti22	3.001	3.001	3.002	3.001	3.002	3.01	3.004	3.003	3.001	3.004	3.005
Ti23	3.005	3.004	3.009	3.003	3.006	3.004	3.005	3.004	3.002	3.007	3.008
Ti24	3.001	3.001	3.004	3.006	3.004	3.006	3.005	3.003	3.005	3.006	3.005
Ti25	3.003	3.007	3.001	3.01	3.001	3.003	3.002	3.005	3.001	3.004	3.007
Ti26	3.001	3.003	3.011	3.008	3.005	3.007	3.004	3.002	3.002	3.005	3.009
Ti27	3.002	3.002	3.007	3.011	3.005	3.005	3.004	3.001	3.006	3.005	3.005
Ti28	3.003	3.003	3.002	3.011	3.01	3.001	3.006	3.009	3.004	3.003	3.012
Ti29	3.001	3.001	3.003	3.017	3.017	3.003	3.008	3.011	3.001	3.002	3.015
Ti30	3.002	3.007	3.009	3.007	3.009	3.006	3.008	3.005	3.006	3.005	3.018
Ti31	3.001	3.005	3.011	3.01	3.005	3.004	3.016	3.014	3.017	3.018	3.019
Ti32	3.002	3.007	3.013	3.013	3.006	3.012	3.013	3.014	3.019	3.022	3.023

Bold letter with black colour represents the value of charge density of surface Ti - atoms, while bold letter with red colour represents the sharp increase in the value of charge density of surface Ti - atoms.

Atoms	RT	152 °C	77 °C	102 °C	127 °C	142 °C	152 °C	177 °C	200 °C	300 °C	400 °C
01	2.001	2.002	2.001	2.003	2.003	2.001	2.002	2.003	2.003	2.002	2.004
02	2.003	2.007	2.006	2.005	2.009	2.002	2.007	2.003	2.005	2.003	2.003
03	2.005	2.003	2.001	2.002	2.003	2.005	2.003	2.004	2.005	2.003	2.005
04	2.001	2.001	2.002	2.001	2.002	2.005	2.001	2.011	2.001	2.002	2.01
05	2.001	2.001	2.004	2.004	2.007	2.003	2.001	2.003	2.007	2.001	2.002
06	2.001	2.004	2.003	2.005	2.003	2.006	2.004	2.003	2.005	2.003	2.013
07	2.001	2.001	2.002	2.004	2.006	2.004	2.001	2.002	2.009	2.001	2.008
08	2.001	2.003	2.001	2.004	2.008	2.003	2.003	2.005	2.004	2.003	2.008
09	2.002	2.002	2.003	2.006	2.003	2.003	2.002	2.001	2.001	2.002	2.005
O10	2.002	2.006	2.005	2.003	2.007	2.005	2.006	2.004	2.003	2.005	2.006
011	2.001	2.001	2.003	2.001	2.005	2.002	2.001	2.006	2.006	2.001	2.004
012	2.001	2.008	2.006	2.002	2.004	2.002	2.008	2.003	2.002	2.008	2.003
013	2.001	2.002	2.003	2.006	2.007	2.005	2.002	2.003	2.006	2.002	2.001
014	2.002	2.003	2.004	2.005	2.004	2.004	2.003	2.004	2.004	2.003	2.004
015	2.001	2.003	2.005	2.002	2.007	2.002	2.003	2.006	2.006	2.006	2.008
016	2.002	2.003	2.006	2.004	2.004	2.004	2.003	2.002	2.007	2.003	2.002
017	2	2.002	2.003	2.006	2.008	2.005	2.002	2.001	2.009	2.002	2.002
018	2.001	2.003	2.002	2.006	2.004	2.004	2.003	2.002	2.003	2.007	2.002
019	2.003	2.004	2.003	2.004	2.005	2.005	2.004	2.003	2.002	2.004	2.006
O20	2.001	2.002	2	2.003	2.003	2.001	2.002	2.004	2.003	2.002	2.004
O21	2	2.002	2.003	2.005	2.008	2.006	2.002	2.003	2.006	2.002	2.005
O22	2.002	2.004	2.005	2.006	2.003	2.008	2.004	2.001	2.006	2.004	2.001
023	2.001	2.005	2.003	2.005	2.007	2.004	2.005	2.004	2.004	2.005	2.005
O24	2.001	2.005	2.002	2.007	2.008	2.005	2.005	2.003	2.006	2.005	2.003
O25	2.002	2.003	2.006	2.002	2.004	2.003	2.003	2.005	2.002	2.003	2.005
O26	2.002	2.004	2.003	2.006	2.007	2.006	2.004	2.003	2.005	2.005	2.004
027	2.001	2.005	2.003	2.005	2.006	2.005	2.005	2.003	2.005	2.005	2.01
O28	2.002	2.001	2.005	2.005	2.004	2.004	2.001	2.001	2.008	2.001	2.001
O29	2.001	2.003	2.002	2.002	2.004	2.008	2.003	2.005	2.002	2.001	2.016
O30	2.003	2.004	2.005	2.008	2.007	2.005	2.004	2.003	2.005	2.004	2.003
031	2.001	2.006	2.003	2.005	2.009	2.002	2.006	2.002	2.005	2.006	2.011

Table- S2: Bader charge calculations of O atoms in Ti_2O_3

032	2.002	2.004	2.007	2.002	2.003	2.002	2.004	2.003	2.003	2.007	2.003
033	2.002	2.003	2.004	2.009	2.002	2.003	2.003	2.004	2.007	2.003	2.012
O34	2.001	2.002	2.001	2.008	2.008	2.007	2.002	2.005	2.005	2.002	2.005
035	2.002	2.003	2.007	2.007	2.001	2.007	2.003	2.002	2.007	2.006	2.003
O36	2.001	2.001	2.004	2.002	2.009	2.003	2.001	2.004	2.002	2.001	2.004
037	2.003	2.005	2.002	2.004	2.004	2.003	2.005	2.001	2.005	2.001	2.005
O38	2.001	2.003	2.005	2.001	2.006	2.004	2.003	2.005	2.001	2.003	2.005
O39	2.001	2.005	2.006	2.002	2.004	2.001	2.005	2.004	2.002	2.002	2.005
O40	2.004	2.005	2.003	2.004	2.007	2.009	2.005	2.003	2.007	2.005	2.003
O41	2.005	2.002	2.001	2.005	2.001	2.006	2.002	2.003	2.005	2.002	2.006
042	2.001	2.003	2.007	2.007	2.005	2.006	2.003	2.002	2.003	2.001	2.002
043	2.006	2.007	2.004	2.008	2.008	2.008	2.007	2.002	2.003	2.007	2.002
O44	2.001	2.002	2.006	2.006	2.006	2.008	2.002	2.003	2.005	2.012	2.003
045	2.001	2.003	2.005	2.002	2.005	2.001	2.003	2.001	2.002	2.003	2.008
O46	2.002	2.004	2.002	2.007	2.003	2.008	2.004	2.001	2.004	2.001	2.001
O47	2.004	2.005	2.003	2.006	2.006	2.005	2.005	2.005	2.008	2.015	2.004
O48	2.006	2.007	2.002	2.008	2.009	2.006	2.006	2.003	2.006	2.007	2.005

Figure S7. (a) Areal capacitance comparison between pristine Ti_2O_3 and ball – milled Ti_2O_3 devices annealed at 300 °C at 5 mV/s scan rate extracted from CV curve. (b) Areal capacitance comparison between Ti_2O_3 and ball – milled Ti_2O_3 devices, both annealed at 300 °C at 5 mV/s scan rate extracted from CV curve. (c) SEM image of ball-milled Ti_2O_3 . (d) Areal capacitance plotted against scan rates of the ball – milled Ti_2O_3 device annealed at 300 °C.

Ball-milling condition: Bill-milling of granular Ti₂O₃ performed at 300 rpm for 12 h in the ethanol solution.

Figure S8. (a) IR drop or voltage drop at the beginning of the discharge curve at 1.25 μ A/cm² applied current density of all the Ti₂O₃ devices obtained from the charge – discharge curve. (b) Areal capacitance plotted against current densities for all the Ti₂O₃ devices extracted from the charge – discharge curve. (c) Areal capacitance plotted against current densities for ball – milled Ti₂O₃ device annealed at 300 °C. (d) Areal capacitance comparison of Ti₂O₃ and ball – milled Ti₂O₃ devices both annealed at 300 °C at 1.25 μ A/cm² current density.

Figure S9. (a) Areal energy density of all the Ti_2O_3 devices compared at a current density of 1.25 μ A/cm². (b) Percentage increase in the energy density of the Ti_2O_3 devices annealed at

different temperatures with respect to pristine Ti_2O_3 device. (c) Areal energy density comparison of the Ti_2O_3 and ball – milled Ti_2O_3 devices both annealed at 300 °C at a current density of 1.25 μ A/cm². (d) Areal energy density plotted against areal power density of the ball – milled Ti_2O_3 device annealed at 300 °C.

Figure S10. Areal capacitance comparison of Ti_2O_3 device annealed at different temperature including pristine one, upon IR exposure at three conditions before, at saturation and after exposure.

Electrode preparation for three-electrode measurements: The working electrode was prepared by adding 90 wt% of ball-milled Ti_2O_3 powder (annealed at 300 °C) in ethanol solvent (10 ml) followed by 4h of sonication. After that 10 wt% of Polyvinylidene fluoride (PVDF) was added to the solution and stirred for 6h. The homogeneous mixture was spray-coated on a cleaned stainless steel substrate using argon gas at 120 °C. The material-coated electrode was dried at 80 °C for 12h and area of the electrode was ~1 × 2.5 cm² with a mass loading of 1.5 mg/cm². The capacitance measurements were done using 1M H₃PO₄ aqueous solution as the electrolyte in a three-electrode cell, containing a Pt wire as a counter electrode, a saturated

Ag/AgCl electrode as a reference electrode, and the as-prepared material-coated stainless steel as the working electrode.

Figure S11. (a) CV curves of the ball-milled Ti_2O_3 (annealed at 300°C) electrode in threeelectrode measurement using 1 M H_3PO_4 electrolyte solution. (b) Specific capacitance and areal capacitance are plotted as a function of scan rates.

References:

- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
- P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953–17979.
 https://doi.org/10.1103/PhysRevB.50.17953.
- J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207–8215. https://doi.org/10.1063/1.1564060.