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Fig. S1. TEM images of (a) NM, (b, c) NM@OM-1, (d) NM@OM-2, (e) NM@OM-6 and (f) 

NM@OM-10. 

 

 

Fig. S2. TEM images of (a, b) OM. 
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Fig. S3. TEM images of NM@OM/TiO2 before (a-d) and after (e-f) photocatalytic 

reaction, (g) an HRTEM image of NM@OM/TiO2 with circled three regions. 

 

 
Fig. S4. XRD patterns of NM@OM-n, OM and NM samples. 
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Fig. S5. (a) Full and (b) partial-enlarged FTIR spectra of NM@OM-n, NM and OM samples. (c) 

partial-enlarged FTIR spectra of NM@OM/TiO2, NM@OM and NM samples. 

 

 

Fig. S6. (a) N2 adsorption-desorption isotherms (b) and the pore size distribution of NM@OM-n, 

NM and OM samples, respectively. 
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Fig. S7. Photocatalytic H2 evolution curves of NM@OM/TiO2 with different TiO2 deposition 

quantity. 

 

Fig. S8. (a) A long-term hydrogen evolution curve over NM@OM/TiO2 under full-spectrum 

irradiation; (b) the XRD curves of NM@OM/TiO2 before and after photocatalytic reaction. 

 

 

Fig. S9. Comparison of Photocatalytic H2 evolution curves of NM@OM/TiO2, NM@OM and NM 

with/without Pt co-catalysts. 
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Fig. S10. VB-XPS spectra of NM, OM and TiO2. 

 

 

 

Fig. S11. Fs-TA spectra of (a) NM@OM and (b) NM@OM/TiO2 (pumped at 370 nm) with TA 

signal given in mOD (OD: optical density); (c) The comparison of kinetic traces probed at 440 nm 

between NM@OM and NM@OM/TiO2. 

 

In the fs-TA test, the liquid sample was prepared by dispersing the powder in 

DMF followed by sonication for 0.5 h, and the concentration was adjusted to achieve 

an optical density of 0.35-0.45 in a 1 mm cuvette measured by the UV-Vis spectrum 
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before the fs-TA test. 

The fs-TA results are shown in Fig. S11, in which distinct differences can be 

observed between NM@OM and NM@OM/TiO2. NM@OM shows a broad and 

unobvious negative absorption ranging up to 600 nm and a relatively obvious negative 

absorption in the range of 420-450 nm, which can be attributed to the ground state 

bleach (GSB). It probably covers the positive excited state absorption (ESA) since 

only weak and fluctuant signals ranging from 450-550 nm appear. In contrast, 

enhanced GSB and the stronger positive signals from 500 to 700 nm belonging to 

ESA can be observed for NM@OM/TiO2, arising from the electron transfer from 

NM@OM to TiO2. The comparison of kinetic traces probed at 440 nm between 

NM@OM and NM@OM/TiO2 is given in Fig. S11c. It can be seen that NM@OM 

displays an extremely long GSB recovery (>> 4 ns), which is unable to accurately 

determine the lifetime from the fitting results1. The GSB of NM@OM/TiO2 decays 

much faster than that in NM@OM, featuring an obvious acceleration of the TA 

kinetics. The biexponential fitting results for NM@OM/TiO2 are τ1 = 115 ± 53 ps 

(23%) and τ2 = 1242 ± 118 ps (77%), with an average relaxation lifetime of 1213 ps, 

which is remarkably shorter than that of NM@OM, suggesting that more efficient 

charge transfer and separation are achieved in NM@OM/TiO2
2. 
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