Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information:

- Film Deposition procedure:

Figure S.1.: Scheme of the growth conditions depicting the deposition temperature profile and oxygen pressure during growth of (a) L/L and H/H samples, (b) L/H and H/L samples. Note that for the second layer deposition the pO_2 conditions are only established once the corresponding temperature is attained.

Growth of LaNiO₃ and La₂NiO₄ single layers:

Figure S.2: High resolution XRD scans of LaNiO₃ single layers (~20nm thick) deposited at T=600 °C on SrTiO₃ under different pO₂ (70mTorr and 10mTorr) 200 LaNiO₃ and 200 SrTiO₃ peaks can be observed along with corresponding thickness fringes. The LaNiO₃ film deposited at low pO₂ shows a weak peak at $20 \sim 43^{\circ}$ close to that of the 006 reflection of c_{\perp} -La₂NiO₄ or 200 of NiO, which could correspond to an incipient decomposition of LaNiO₃.

Figure S.3: High resolution XRD scans of La₂NiO₄ single layers deposited on SrTiO₃ under two different pO₂ (70mTorr and 10mTorr). 006 La₂NiO₄ and 200 SrTiO₃ reflections can be observed. In both cases the film grows with c_{\perp} -La₂NiO₄ orientation.

Figure S.4: I(V) curves measured between two Pt contacts placed either on the top La_2NiO_4 and on the bottom $LaNiO_3$ layers for the two cases: H/L and L/H bilayers (left and right, respectively). Regardless the deposition conditions, high or low pO_2 , the curves show a linear dependence indicating an ohmic behaviour of Pt/La₂NiO₄ and Pt/LaNiO₃ junction. Note that the corresponding resistances are about 100 Ω and 500 Ω , for LaNiO₃ and La₂NiO₄, respectively. These values are much lower than those of the Pt/LaNiO₃/La₂NiO₄/Pt bilayers (in Fig. S6) indicating the main contribution to the resistance of the bilayers does not correspond to the regions in contact with Pt.

Figure S.5 Resistance versus Voltage for the three different bilayers showing the building up of an hysteretic behaviour upon voltage increase, which only remains stable at V_{max} =±15V for the L/L sample. (The arrows indicate the direction of the sweep)

Figure S.6 Left: HRS (filled symbols) and LRS (empty symbols), measured at V=0.5 V, for the three bilayers as a function of the maximum voltage amplitude. Right: Evolution of the HRS/LRS ratio (measured at V=0.5 V) as a function of the maximum voltage amplitude.