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1. Experimental Section 

Table S1. Synthesis of segmented polyurethanes: Stoichiometry and molar content. 

OH (CroHeal 1000) / 

[OH(CroHeal) + OH (BDO)] 

Nominal soft phase fraction 

(���) 

NCO / OH (total) 

0.71 0.71 1.1 

0.59 0.59 1.1 

0.51 0.51 1.1 

0.42 0.42 1.1 

0.27 0.27 1.1 

 

 

��� = 0.71 

Monomer Mass 

(g) 

Molar content 

(mmol) 

CroHealTM 1000 6.0 4.87 

BuAc 0.78 6.76 

BDO 0.18 1.997 

TEGO270 0.028 n.a. 

DBTDL 0.063 0.1 

IPDI 1.678 7.550 

 

��� = 0.59 

Monomer Mass 

(g) 

Molar content 

(mmol) 

CroHealTM 1000 6.0 4.87 

BuAc 0.83 7.15 

BDO 0.30 3.328 

TEGO270 0.028 n.a. 

DBTDL 0.063 0.1 

IPDI 2.004 7.550 

 

��� = 0.51 

Monomer Mass 

(g) 

Molar content 

(mmol) 

CroHealTM 1000 6.0 4.87 

BuAc 0.87 7.53 

BDO 0.420 4.660 

TEGO270 0.028 n.a. 

DBTDL 0.063 0.1 

IPDI 2.329 10.479 

 

��� = 0.27 

Monomer Mass 

(g) 

Molar content 

(mmol) 

CroHealTM 1000 6.0 4.87 

BuAc 1.16 10.02 

BDO 1.20 13.31 

TEGO270 0.028 n.a. 
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DBTDL 0.063 0.1 

IPDI 4.446 19.99 

 

2. Characterization methods 

Table S2. Stress from static force at ����  (��� �	 
��
), maximum strain (����), junction density (��) 

maximum released entropy density (∆��
���), maximum stored entropy density (∆��

���) for the 

different polyurethane formulations obtained via DMA analysis. The data reported are the average 

value and standard deviation calculated on a set of three DMA experiments. 

��� 

��� �	 
��
 

(MPa) 

���� 

(%) 

�� 

 (mol/m3) 

∆��
��� 

 (kJ/m3) 

∆��
��� 

 (kJ/m3) 

0.71 0.243±0.018 9.4±0.30 393±30 10.16±0.90 11.75±0.94 

0.59 0.202±0.014 7.9±0.45 379±11 7.23±0.66 8.20±1.02 

0.51 0.190±0.013 7.5±0.22 366±24 6.23±0.62 7.35±0.64 

0.42 0.159±0.007 8.3±0.19 274±16 4.45±0.45 6.80±0.19 

0.27 0.0514±0.001 4.8±0.85 136±11 0.71±0.58 1.31±0.52 

 

Table S3. Temperatures corresponding to the mid and end-point of VLT transition and corresponding 

∆�� as calculated by VLT DMA study. These points were used as healing temperatures of the PU 

coatings. 

��� Ti 

(°C) 

Tmid 

(°C) 

Tend-point 

(°C) 

∆��
���  

(kJ/m3) 

∆��

��������	
 

(kJ/m3) 

0.71 3±0.2 21±0.3 35±0.3 6.68±1.44 10.62±0.89 

0.59 4±0.2 23.5±0.3 38.5±0.3 4.32±1.61 7.39±0.66 

0.51 9±0.2 27.5±0.3 42.5±0.5 3.46±1.05 6.62±0.62 

0.42 12.5±0.3 33±0.3 48±0.5 1.39±0.41 4.51±0.57 

0.27 18±0.3 55±0.5 80±1.1 0.112±0.06 0.71±0.20 
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Table S4. Additional healing temperatures tested for ��� = 0.71 and ��� = 0.51 and corresponding 

∆�� as calculated by VLT DMA study. 

��� Ti 

(°C) 

Tretraction 

(°C) 

∆S� 

(kJ/m3) 

0.71 3±0.2 17±0.3 0.39±0.09 

  23±0.3 7.76±1.15 

  30±0.3 10.55±0.92 

0.51 9 24±0.3 0.69±0.18 

  28±0.3 3.10±0.93 

  36±0.3 6.20±0.69 

 

 

3. Optical micrographs of damaged and healed coatings 

In this section we show exemplary optical micrographs of the damaged and healed coatings. Optical 

micrographs of the coating in the damage state are reported on the left end side, while  the optical 

micrographs of the coating in the healed state are reported on the right end side. The scale bar 

measures a length of 50 µm. 

 

 !" = 0.71, Tdamage = 3 °C,  Thealing = 17 °C 

 

��� = 0.71, Tdamage = 3 °C,  Thealing = 21 °C 
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��� = 0.71, Tdamage = 3 °C,  Thealing = 21 °C, Rockwell Tip 

 

��� = 0.71, Tdamage = 3 °C,  Thealing = 23 °C 

 

��� = 0.71, Tdamage = 3 °C,  Thealing = 30 °C 

 

��� = 0.71, Tdamage = 3 °C,  Thealing = 35 °C 
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��� = 0.71, Tdamage = 3 °C,  Thealing = 35 °C, Rockwell Tip 
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 !" = 0.59, Tdamage = 4 °C,  Thealing = 23.5 °C 

 

��� = 0.59, Tdamage = 4 °C,  Thealing = 38.5 °C 

 

��� = 0.59, Tdamage = 4 °C,  Thealing = 38.5 °C, Rockwell Tip 
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 !" = 0.51, Tdamage = 9 °C,  Thealing = 24 °C 

 

��� = 0.51, Tdamage = 9 °C,  Thealing = 27.5 °C 

 

��� = 0.51, Tdamage = 9 °C,  Thealing = 27.5 °C, Rockwell Tip 

 

��� = 0.51, Tdamage = 9 °C,  Thealing = 28 °C 
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��� = 0.51, Tdamage = 9 °C,  Thealing = 36 °C 

 

��� = 0.51, Tdamage = 9 °C,  Thealing = 42.5 °C 
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 !" = 0.42, Tdamage = 12 °C,  Thealing = 33 °C 

 

���  = 0.42, Tdamage = 12 °C,  Thealing = 48 °C 
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 !" = 0.27, Tdamage = 18 °C,  Thealing = 55 °C 

 

���  = 0.27, Tdamage = 18 °C,  Thealing = 80 °C 
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