Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Support Information to manuscript Montano et al. "Local strain-induced energy storage as driving force for autogenous scratch closure", J. Mat. Chem. (**2022**) DOI: 10.1039/D1TA10441A

SUPPORT INFORMATION

Local strain-induced energy storage as driving force for autogenous scratch closure

V. Montano¹, M. W. Urban², S. van der Zwaag¹, S.J. Garcia^{1*}

¹Novel Aerospace Materials group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands

²Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA

*correspondence email: s.j.garciaespallargas@tudelft.nl

List of content

- 1. Experimental Section
 - Table S1. Synthesis of segmented polyurethanes: Stoichiometry and molar content
- 2. Characterisation Methods
 - Table S2. Stress from static force at ε_{max} (σ<sub>SF at ε_{max}), maximum strain (ε_{max}), junction density (ν_j) maximum released entropy density (ΔS_R^{max}), maximum stored entropy density (ΔS_S^{max}) for the different polyurethane formulations obtained via DMA analysis
 </sub>
 - **Table S3.** Temperatures corresponding to the mid and end-point of VLT transition and corresponding ΔS_R as calculated by VLT DMA study
 - **Table S4.** Additional healing temperatures tested for $\chi_{SF} = 0.71$ and $\chi_{SF} = 0.51$ and

corresponding ΔS_R as calculated by VLT DMA study

3. Optical micrographs of damage and healed coatings

1. Experimental Section

Table S1. Synthesis of segmented	pol	urethanes: Stoichiometry	v and molar o	content.
Tuble 51. Synthesis of Segmented			y ana molai v	some me

OH (CroHeal 1000) /	Nominal soft phase fraction	NCO / OH (total)
[OH(CroHeal) + OH (BDO)]	(χ_{SF})	
0.71	0.71	1.1
0.59	0.59	1.1
0.51	0.51	1.1
0.42	0.42	1.1
0.27	0.27	1.1

 $\chi_{SF} = 0.71$

Mass	Molar content
(g)	(mmol)
6.0	4.87
0.78	6.76
0.18	1.997
0.028	n.a.
0.063	0.1
1.678	7.550
	Mass (g) 6.0 0.78 0.18 0.028 0.063 1.678

χ_{SF} = 0.59				
Monomer	Mass	Molar content		
	(g)	(mmol)		
CroHeal [™] 1000	6.0	4.87		
BuAc	0.83	7.15		
BDO	0.30	3.328		
TEGO270	0.028	n.a.		
DBTDL	0.063	0.1		
IPDI	2.004	7.550		

 $\chi_{SF} = 0.51$

NSF CIC-				
Monomer	Mass	Molar content		
	(g)	(mmol)		
CroHeal [™] 1000	6.0	4.87		
BuAc	0.87	7.53		
BDO	0.420	4.660		
TEGO270	0.028	n.a.		
DBTDL	0.063	0.1		
IPDI	2.329	10.479		

Χsf	=	0.27
-----	---	------

Monomer	Mass	Molar content
	(g)	(mmol)
CroHeal [™] 1000	6.0	4.87
BuAc	1.16	10.02
BDO	1.20	13.31
TEGO270	0.028	n.a.

Support Information to manuscript Montano et al. "Local strain-induced energy storage as driving force for autogenous scratch closure", J. Mat. Chem. (**2022**) DOI: 10.1039/D1TA10441A

DBTDL	0.063	0.1
IPDI	4.446	19.99

2. Characterization methods

Table S2. Stress from static force at ε_{max} ($\sigma_{SF \ at \ \varepsilon_{max}}$), maximum strain (ε_{max}), junction density (ν_j) maximum released entropy density (ΔS_R^{max}), maximum stored entropy density (ΔS_S^{max}) for the different polyurethane formulations obtained via DMA analysis. The data reported are the average value and standard deviation calculated on a set of three DMA experiments.

	$\sigma_{SFatarepsilon_{max}}$	ε_{max}	ν_j	ΔS_R^{\max}	ΔS_S^{\max}
Xsf	(MPa)	(%)	(mol/m³)	(kJ/m³)	(kJ/m³)
0.71	0.243±0.018	9.4±0.30	393±30	10.16±0.90	11.75±0.94
0.59	0.202±0.014	7.9±0.45	379±11	7.23±0.66	8.20±1.02
0.51	0.190±0.013	7.5±0.22	366±24	6.23±0.62	7.35±0.64
0.42	0.159±0.007	8.3±0.19	274±16	4.45±0.45	6.80±0.19
0.27	0.0514±0.001	4.8±0.85	136±11	0.71±0.58	1.31±0.52

Table S3. Temperatures corresponding to the mid and end-point of VLT transition and corresponding ΔS_R as calculated by VLT DMA study. These points were used as healing temperatures of the PU coatings.

χ _{SF}	Ti	T _{mid}	T _{end-point}	ΔS_R^{mid}	$\Delta S_R^{end-point}$
	(°C)	(°C)	(°C)	(kJ/m³)	(kJ/m³)
0.71	3±0.2	21±0.3	35±0.3	6.68±1.44	10.62±0.89
0.59	4±0.2	23.5±0.3	38.5±0.3	4.32±1.61	7.39±0.66
0.51	9±0.2	27.5±0.3	42.5±0.5	3.46±1.05	6.62±0.62
0.42	12.5±0.3	33±0.3	48±0.5	1.39±0.41	4.51±0.57
0.27	18±0.3	55±0.5	80±1.1	0.112±0.06	0.71±0.20

Table S4. Additional healing temperatures tested for	χ_{SF} = 0.71 and χ_{SF} = 0.51 and corresponding
ΔS_R as calculated by VLT DMA study.	

Xsf	<i>Т</i> і (°С)	T _{retraction} (°C)	ΔS _R (kJ/m³)
0.71	3±0.2	17±0.3	0.39±0.09
		23±0.3	7.76±1.15
		30±0.3	10.55±0.92
0.51	9	24±0.3	0.69±0.18
		28±0.3	3.10±0.93
		36±0.3	6.20±0.69

3. Optical micrographs of damaged and healed coatings

In this section we show exemplary optical micrographs of the damaged and healed coatings. Optical micrographs of the coating in the damage state are reported on the left end side, while the optical micrographs of the coating in the healed state are reported on the right end side. The scale bar measures a length of 50 μ m.

 $\chi_{SF} = 0.71$, $T_{damage} = 3 \text{ °C}$, $T_{healing} = 17 \text{ °C}$

 χ_{SF} = 0.71, T_{damage} = 3 °C, $T_{healing}$ = 21 °C

 χ_{SF} = 0.71, T_{damage} = 3 °C, $T_{healing}$ = 21 °C, Rockwell Tip

 χ_{SF} = 0.71, T_{damage} = 3 °C, $T_{healing}$ = 23 °C

 χ_{SF} = 0.71, T_{damage} = 3 °C, $T_{healing}$ = 30 °C

 χ_{SF} = 0.71, T_{damage} = 3 °C, $T_{healing}$ = 35 °C

 χ_{SF} = 0.71, T_{damage} = 3 °C, $T_{healing}$ = 35 °C, Rockwell Tip

χ_{SF} = 0.59, T_{damage} = 4 °C, T_{healing} = 23.5 °C

 χ_{SF} = 0.59, T_{damage} = 4 °C, $T_{healing}$ = 38.5 °C

 χ_{SF} = 0.59, T_{damage} = 4 °C, $T_{healing}$ = 38.5 °C, Rockwell Tip

χ_{SF} = 0.51, *T*_{damage} = 9 °C, *T*_{healing} = 24 °C

 $\chi_{SF} = 0.51, T_{damage} = 9 \text{ °C}, T_{healing} = 27.5 \text{ °C}$

 χ_{SF} = 0.51, T_{damage} = 9 °C, $T_{healing}$ = 27.5 °C, Rockwell Tip

 χ_{SF} = 0.51, T_{damage} = 9 °C, $T_{healing}$ = 28 °C

 $\chi_{SF} = 0.51, T_{damage} = 9$ °C, $T_{healing} = 36$ °C

 χ_{SF} = 0.51, T_{damage} = 9 °C, $T_{healing}$ = 42.5 °C

χ_{SF} = **0.42**, *T*_{damage} = 12 °C, *T*_{healing} = 33 °C

 χ_{SF} = 0.42, T_{damage} = 12 °C, $T_{healing}$ = 48 °C

χ_{SF} = **0.27**, *T*_{damage} = 18 °C, *T*_{healing} = 55 °C

 χ_{SF} = 0.27, T_{damage} = 18 °C, $T_{healing}$ = 80 °C

References

[1] C. C. Hornat, Y. Yang, M. W. Urban, *Adv. Mater.* **2017**, *29*, 1603334.