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Calculation of IEI ( , ) in detail:𝐻𝑚𝑎𝑠𝑠 𝑍𝑚𝑎𝑠𝑠

A normalized “the ratio of areal loading of interlayer to sulfur (I/S)” was proposed 

and “interlayer efficiency index (IEI)” was obtained by I/S to quantify the efficiency of 

interlayers at a certain current density. The schematic of a Li-S pouch cell with a 

multilayer sulfur cathode (double side coating) and lithium anode is shown in Fig. S4a. 

To simplify the analysis, a simple model with Cu foil, lithium anode, separator, 

interlayer, sulfur cathode, and Al foil is presented for calculation and discussion (Fig. 

S4b). In this model, all components in two Li-S pouch cells were supposed to be the 

same except the UHEI@PP or PP separator. Therefore, E (gravimetric energy density) 

can be derived by:

𝐸 =
𝑈 ∙ 𝑌 ∙ 𝐴 ∙ 𝑆

𝑚𝑎𝑙𝑙
                                                                 (1)

in which  is simplified as the average voltage of Li-S cells (2.1 V), Y is the practical 𝑈

specific capacity based on sulfur (mAh g-1), A is the areal sulfur loading with single 

coating (mg cm−2), S is the area of sulfur cathode (cm2), mall is the total mass of all 

components (without the interlayer) in Li-S pouch cell (mg),  is used to represent the 𝐸

energy desinty (Wh kg-1) of a practical cell upon discharge under specified conditions. 

According to the Equation (1), the gravimetric energy density of Li-S pouch cell 

without/with interlayer materials (E without/with interlayer) can be deduced to:

𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 =
𝑈 ∙ 𝑌𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 ∙ 𝐴 ∙ 𝑆

𝑚𝑎𝑙𝑙
                                        (2)

      𝐸𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 =
𝑈 ∙ 𝑌𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 ∙ 𝐴 ∙ 𝑆

𝑚𝑎𝑙𝑙 + 𝑋 ∙ 𝑆
                                       (3)

Here, Ywith interlayer or Ywithout interlayer is the practical specific capacity based on sulfur (mA 

h g-1) with or without interlayer materials at a certain current density, X is the areal mass 

2



loading of interlayer materials (mg cm-2). As shown in Table S3, the normalized I/S 

ratio was obtained by calculating the ratio of areal loading of interlayer and sulfur. I/S 

was used to normalize the performance divergence with and without an interlayer at a 

certain current density to obtain IEI. One IEI ( ) calculated from the energy density 𝐻𝑚𝑎𝑠𝑠

of pouch cells was obtained as:

                    (4)
𝐻𝑚𝑎𝑠𝑠 =

𝐸𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟

𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 × 𝐼/𝑆

which means the increased ratio of gravimetric energy density by per mass (g) interlayer 

based on 1 g sulfur in pouch cells. However, not all interlayers reported before were 

tested in pouch cells. Therefore, IEI ( )  was proposed to simplify the .  𝑍𝑚𝑎𝑠𝑠 𝐻𝑚𝑎𝑠𝑠 𝑍𝑚𝑎𝑠𝑠

was calculated from practical specific capacity of coin cells as:

𝑍𝑚𝑎𝑠𝑠 =
𝑌𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟

𝑌𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑒𝑟 × 𝐼/𝑆
                                     (5)

which means the increased ratio of practical specific capacity promoted by per mass (g) 

interlayers based on 1 g sulfur in coin cells. According to Equation (4) and (5):

𝐻𝑚𝑎𝑠𝑠 = 𝑍𝑚𝑎𝑠𝑠 × (1 ‒
𝑋 ∙ 𝑆

𝑚𝑎𝑙𝑙 + 𝑋 ∙ 𝑆)                            (6)

can be obtained. By proposing these factors, a more objective standard to measure the 

interlayer efficiency in this field was provided. Meanwhile, similar deduction methods 

can be used to evaluate the efficiency of other non-active components in Li-S 

batteries. 
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Fig. S1 SEM images of (a) pristine separator and (b) BN nanosheet. (c) TEM image 

of BN nanosheet. (d) HRTEM image of BN nanosheet.
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Fig. S2 (a) SEM image and (b) Corresponding EDS of UHEI. 

The corresponding EDS of UHEI (Fig. S2a-b) shows the distributions of B, C, N, O, F 

and Au elements. The F element comes from the binder of SWCNT solution. Au comes 

from the metal spraying before conducting the SEM image. 
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Fig. S3 (a) UV-Vis spectra of electrolyte in right chamber of H-shape device after 48 

h. (b) Electrochemical impedance spectra estimating lithium conductivity.
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Fig. S4 Rate performances of Li-S batteries with UHEI@PP and PP separators.

The rate performance tests of Li-S coin cells with UHEI@PP and PP separators are 

provided in Fig. S4. When the rate was increased to 0.2, 0.5, 1 C, the capacities with 

UHEI@PP decreased to 961.5 mA h g−1, 864.3 mA h g−1, and 792.1 mA h g−1, 

respectively and an extremely stable discharge capacity of 1025.2 mA h g−1 was 

recovered when restored to 0.1 C. On the other hand, Li-S batteries with the PP 

separator showed poor high-rate capability, and only 817.6 mA h g-1 was recovered 

when restored to 0.1 C. Sulfur cathodes for rate performance tests were fabricated as 

follows. First, CMK-3 powder (XFP03, XFNANO) and sulfur powder with a mass ratio 

of 4:6 were mixed in a Teflon container and heated to 155 °C for 12 h to obtain CMK-

3/S. Second, the CMK-3/S, SP and polyvinylidene fluoride (PVDF) binder with a mass 

ratio of 7:2:1 was dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry. Finally, 

the slurry was coated onto a carbon-coated Al foil and dried in a vacuum oven at 60 °C 

for 12 h. The active material loading was kept at 1.5-2.0 mg cm-2.
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Fig. S5 The schematic illustration of the cross sectional (a) Multilayer Li-S pouch cell 

with double side coating. (b) A simplified cell model for calculating E with single 

side coating.
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Fig. S6 Cycling stability and coulombic efficiency of Li-S coin cells with UHEI@PP 

and PP separator at 0.1 C under lean electrolyte conditions (E/S ratio = 8 μL mg-1) for 

70 cycles. 
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Table S1. Summary of different electrochemical parameters for Li-S batteries with 

UHEI@PP and PP separator.

Parameters PP separator UHEI@PP
Li+ conductivity (mS cm-1) 0.396 0.373
Li+ transfer number 0.66 0.69

Table S2. Comparison of the UHEI with other interlayers for Li-S batteries.

Materials Sulfur loading
(mg cm-2)

High plateau ratio Low plateau ratio Thickness

P/C-C-N-Co1 1 1.74 1.58 10 μm
CGF2 1.2 1.67 1.23 30 μm

5.3 0.82 4.06
NCM3 1.5 0.97 1.32 10 μm

4 1.27 1.56
ZnHMT4 4.5 1.33 1.31 1 nm
μFGF-MoS2/C-TiN5 2.5 1.6 3.02 30 μm
ZnS/NCNS6 1.5 1.32 1.3 No data
TiB2@G7 1.5 1.58 1.73 12.5 μm
PZI8 2.2 0.98 1.01 0.2 μm

4.5 1 1.04
5.8 1.02 1.06

UHEI* 2 1.32 1.53 0.86 μm
5 1.83 2.08
10 16.95 2.91

*: this work

Table S3. Comparison of the UHEI with other interlayers for Li-S batteries.

Materials Sulfur loading
(mg cm-2)

Interlayer loading
(mg cm-2)

Interlayer 
thickness (μm)

I/S Zmass

(100 cycles)
CGF2 1.2 0.3 30 0.25 5.52 (0.2 C)
NCM3 1.5 0.9 10 0.60 3.15 (0.2 C)
ZnHMT4 4.5 0.5 10 0.11 10.60 (0.1 C)
AS PC-Sn4P3

9 1 0.15 4 0.15 9.18 (0.2 C)
HC-PDDA10 1.2 0.30 15 0.25 7.29 (0.2 C)
PPZ-HG-CCP11 1.5 3.1 50 2.07 0.62 (0.2 C)
PM (0.4 M)-CNT12 0.9 0.16 4 0.18 7.91 (0.2 C)
UHEI* 4.1 0.17 0.86 0.04 182.30 (0.2 C)
*: this work
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