Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

## Plasma Induced Transformation: A New Strategy to in situ Engineer

## **MOF-derived Heterointerface for High-Efficiency Electrochemical**

## **Hydrogen Evolution**

Xin Kong<sup>b</sup>, Guiyang Liu<sup>c</sup>, Hui-Qing Peng<sup>a</sup>, Zian Xu<sup>b</sup>, Shuyu Bu<sup>b</sup>, Bin Liu<sup>a,\*</sup>, and Wenjun Zhang<sup>b,d,\*</sup>

<sup>a</sup>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

<sup>b</sup>Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, HK SAR, China. <sup>c</sup>Lab of New Materials for Power Sources, Honghe University, Mengzi, Yunnan, China. <sup>d</sup>City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China Corresponding author. Email: <u>binliu@buct.edu.cn</u> (B. Liu); <u>apwjzh@cityu.edu.hk</u> (W. Zhang)



Fig. S1. XRD pattern of ZIF-67/CC.



Fig. S2. (a) XRD patterns of CC and  $Co_4N-Co_3O_4-C/CC$ , and (b) Raman spectra of ZIF-67/CC and  $Co_4N-Co_3O_4-C/CC$ .



Fig. S3. SEM images of (a)-(c) Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-1, (d) and (e) Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-10.



Fig. S4. High-resolution XPS spectra of (a) Co 2p and (b) N 1s of Co<sub>4</sub>N-C/CC.



**Fig. S5.** High-resolution XPS spectra of (a) Co 2p and (b) O 1s of Co<sub>3</sub>O<sub>4</sub>-C/CC.



Fig. S6. EDX results of (a)  $Co_4N-Co_3O_4$ -C/CC-1 and (b)  $Co_4N-Co_3O_4$ -C/CC-5.



Fig. S7. High-resolution XPS spectra of N 1s collected on  $Co_4N-Co_3O_4$ -C/CC-1 and  $Co_4N-Co_3O_4$ -C/CC-5.

The nitrogen atomic percentages of Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-1 and Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-5 are 4% and 7% according to the XPS analysis which is similar with EDX results. When the plasma treatment is prolonged to 10 min, the sample material is almost etched away from carbon cloth and the surface of carbon cloth becomes smooth again, which results in that the high-resolution XPS spectra of N 1s collected on Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-10 cannot be used to compare with those on Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-1 and Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-5. Therefore it is not shown in **Fig. S7**.



Fig. S8. The CV curves of (a) ZIF-67/CC, (b)  $Co_4N-Co_3O_4$ -C/CC-1, (c)  $Co_4N-Co_3O_4$ -C/CC-5, and (d)  $Co_4N-Co_3O_4$ -C/CC-10 measured at different scan rates of 75, 100, 125, 150, and 175 mV s<sup>-1</sup> in KOH solution.



Fig. S9. The LSV curves of Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-5, control samples Co<sub>4</sub>N/CC and Co<sub>3</sub>O<sub>4</sub>/CC.



**Fig. S10.** (a) The Nyquist plots of  $Co_4N-Co_3O_4$ -C/CC-5, control samples  $Co_4N/CC$  and  $Co_3O_4/CC$  obtained from the EIS measurements. (b) The linear fitting of the capacitive currents of the electrodes as a function of scan rates. The CV curves of (c)  $Co_4N/CC$  and (d)

 $Co_3O_4$  /CC measured at different scan rates of 75, 100, 125, 150, and 175 mV s<sup>-1</sup> in KOH, respectively.



Fig. S11. XRD pattern of Co<sub>4</sub>N-Co<sub>3</sub>O<sub>4</sub>-C/CC-5 after HER stability measurement for 140 h in

1.0 M KOH solution.



Fig. S12. High-resolution XPS spectra and deconvolutions of (a) Co 2p, (b) C 1s, (c) N 1s and (d) O 1s of  $Co_4N-Co_3O_4$ -C/CC-5 after HER stability measurement for 140 h in 1.0 M KOH solution.



Fig. S13. (a) The LSV curve and (b) chronopotentiometry curve at 10 mA cm<sup>-2</sup> of AWE system.