Supporting information

Na-β-Al₂O₃ stabilized Fe₂O₃ oxygen carriers for chemical looping water splitting: correlating structure with redox stability

Nur Sena Yüzbasi^a, Andac Armutlulu^a, Thomas Huthwelker^b, Paula M. Abdala^{*, a}, Christoph R. Müller^{*, a}

^a Laboratory of Energy Science and Engineering, ETH Zurich, Leonhardstrasse 27, 8092,

Zurich, Switzerland

^b PHOENIX X07MA/B Beamline, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland

*Corresponding authors: <u>abdalap@ethz.ch</u>, <u>muelchri@ethz.ch</u>

		FeAl	FeAlNa1	FeAlNa5
Nominal weight compositions	Fe ₂ O ₃ (wt. %)	75	76	76
	Al ₂ O ₃ (wt. %)	25	23	19
	Na ₂ O (wt. %)	-	1	5
	Al ₂ O ₃ :Fe ₂ O ₃ ratio	0.33	0.30	0.33
Weight-based compositions calculated	Fe ₂ O ₃ (wt. %)	77	76.4	73.8
from EDX	Al ₂ O ₃ (wt. %)	23	22.5	21.9
	Na ₂ O (wt. %)		1.1	4.3
	Al ₂ O ₃ :Fe ₂ O ₃ ratio	0.30	0.30	0.33
Molar ratios calculated from EDX	Fe	0.96	0.95	0.94
	Al	0.44	0.42	0.42
	Na	-	0.03	0.14
Surface Area [m ² /g]		9	17	11
Pore Volume [cm ³ /g]		0.1	0.19	0.13
Average particle size [nm]		112 ± 35	107 ± 25	100 ± 27

 Table S1: Weight-based composition, surface areas, pore volumes and particle diameters of the materials calcined at 900 °C.

		a [Å]	b [Å]	c [Å]	Cell vol- ume [Å ³]	Phase content	Rp	Rwp	Rexp
						[wt %]			
FeAl	Fe ₂ O ₃	5.0169(1)	5.0169(1)	13.6849(5)	298.29 (1)	73(1)	6.35	9.07	3.78
	Al ₂ O ₃	4.7851(3)	4.7851(3)	13.054(1)	258.86(3)	27(1)			
FeAlNa1	Fe ₂ O ₃	5.0173(1)	5.0173(1)	13.6898(5)	298.46(2)	77(1)	5.37	7.19	3.79
	Al ₂ O ₃	4.7829(2)	4.7829(2)	13.053(1)	258.59(3)	23(1)			
FeAlNa5	Fe ₂ O ₃	5.0181(1)	5.0181(1)	13.6867(1)	298.48(1)	82(1)	7.07	9.55	3.79
	Al ₂ O ₃	4.782 (1)	4.782(1)	13.047(6)	258.4(1)	3(1)			
	NaAl ₁₁ O ₁₇	5.6385(8)	5.6385(8)	22.816(6)	628.2(2)	15(1)			

 Table S2: Phase composition and cell parameters determined by Rietveld refinement of the XRD data of the calcined oxygen carriers.^a

^a Fe₂O₃ phase: *R*-3*c* space group, with atomic positions as reported in [1], Al₂O₃ phase: *R*-3*c* space group, with atomic positions as reported in [2] and Na- β -Al₂O₃: *P*6₃/*mmc* space group with atomic positions as reported in [3]

- 1. P. Schouwink, L. Dubrovinsky, K. Glazyrin, M. Merlini, M. Hanfland, T. Pippinger and R. Miletich, American Mineralogist, 2011, **96**, 1781-1786.
- 2. S. Kondo, K. Tateishi and N. Ishizawa, Japanese Journal of Applied Physics, 2008, 47, 616.
- 3. N. Zhu, F. Guo, S. Yan, L. Chen and A. Li, Acta Chimica Sinica, 1992, 50, 527-532.

Figure S1: XRD patterns of the reference materials: γ -Al₂O₃, α -Al₂O₃, Na- γ -Al₂O₃ and Na- β -Al₂O₃.

Figure S2: Concentration profiles of the off gases during redox cycling for the different oxygen carriers investigated. Insets show cycle 1 and 14.

The conversion of CO during reduction, Xco, is plotted in Figure S3b and was calculated from the quantity of CO consumed according to:

$$Xco = \frac{m_{CO}}{x_{oc}m_{oc}} \cdot \left(\frac{M_{Fe_2O_3}}{M_{CO}} \cdot \frac{1}{3}\right)$$
(S1)

where m_{co} is the mass of CO consumed, m_{oc} is the mass of the oxygen carrier, x_{oc} is the mass fraction of Fe₂O₃ in the oxygen carrier and $M_{Fe_2O_3}$ and M_{CO} are the molecular weights of Fe₂O₃ and CO, respectively. 1/3 is the stoichiometric ratio of Fe₂O₃/CO during reduction.

Figure S3: Reduction of the different oxygen carriers in the first cycle: (a) Concentration profiles of the off gases and (b) conversion of the oxygen carriers.

To compare the reduction characteristics of the different oxygen carriers, we performed temperature programmed reduction (TPR) experiments (Figure S4). In a typical test, ~ 30 mg of the oxygen carrier was heated up in 10 vol.% CO (balance N_2) or 10 vol.% H₂ (balance N_2) from 25 to 800 °C using a temperature ramp of 10 °C/min. Subsequently the oxygen carriers were held at 800 °C for 2 h. Our CO-TPR (Figure S4a) and H₂-TPR (Figure S4b) experiments indicate that the reduction of the oxygen carriers is slower in CO compared to H₂. Additionally, Figure S4c plots the H₂-consumption during H₂-TPR. There is no significant difference in the reduction characteristics of the oxygen carriers studied; in line with the findings obtained from the analysis of the off gas composition in the redox cycling experiments (Figure S3).

Figure S4: Temperature-programmed reduction experiments: (a) CO-TPR, (b) H_2 -TPR and (c) H_2 -consumption during H_2 -TPR.

To explore the effect of the addition of sodium and cycle number on the water splitting kinetics, the conversion, X_{H_2} , during steam oxidation was calculated from the quantity of H₂ produced:

$$X_{H_2} = \frac{m_{H_2}}{x_{oc}m_{oc}} \cdot \left(\frac{M_{Fe_2O_3}}{M_{H_2}} \cdot \frac{3}{8}\right)$$
(S2)

where m_{H_2} is the mass of H₂ produced, m_{oc} is the mass of the oxygen carrier, x_{oc} is the mass fraction of Fe₂O₃ in the oxygen carrier and $M_{Fe_2O_3}$ and M_{H_2} are the molecular weights of Fe₂O₃ and H₂, respectively. 3/8 is the stoichiometric ratio of Fe₂O₃/H₂ during oxidation.

Figure S5: Effect of cycle number on the fractional conversion of the oxygen carriers in (a) cycle 1, (b) cycle 7 and (c) cycle 15 during steam oxidation.

Figure S6: Rate of conversion as a function of total conversion of (a) FeAl, (b) FeAlNa1 and (c) FeAlNa5 during steam oxidation.

Figure S7: (a) k^2 -weighted EXAFS spectra and (b) Fourier transformed EXAFS functions (k^2 -weighted) of the calcined oxygen carriers measured at the Fe K-edge.

Figure S8: XANES spectra at the Na K-edge of the reference materials

Figure S9: Linear combination fitting analysis of the Na K-edge XANES spectra of FeAlNa5, Fe-AlNa1 and FeAlNa5_{_cyc} using Na- β -Al₂O₃ and Na- γ -Al₂O₃ as references.

Figure S10: FT-EXAFS functions (k³–weighted) at the Fe K-edge of the cycled oxygen carriers.

Figure S11: Comparison of the XANES spectra at the Na and Al K-edges of the materials before and after cyclic redox tests (15 cycles, reduced state).

Figure S12: Electron micrographs of the calcined oxygen carriers.

Figure S13: HAADF images of the calcined oxygen carriers and elemental maps of iron (STEM-EDX).

	1 <u>μm</u>		1 <u>μm</u>	1 <u>μm</u>	
FeAl				6 (2)	
			Fe	Al	
	1 <u>μm</u>		1 <u>μm</u>	т <u>1 µт</u>	1 <u>μm</u>
VINa1					
FeA					Na
		的物理全部和专门	re	AL	
2	1 <u>µm</u>		1 <u>μm</u>	<u>1μm</u>	1 <u>µm</u> _
AINa					
Fe					Na
	Carling Parks in		re	AL CALL	

Figure S14: SEM/EDX maps of the calcined materials.

Figure S15: Schematic representation of the phase evolution during redox cycling of FeAl, FeAlNa1 and FeAlNa5.

SEM images of the cycled materials after reduction (in 10 vol. % CO in N_2) and subsequent reoxidation (in 23 vol. % H₂O in N_2 followed by 5 vol. % O₂ in N_2) are given in Figure S9. SEM images indicate that the oxygen carriers that showed a poor cyclic redox performance (FeAl and FeAlNa1) sintered after having been exposed to 15 redox cycles. The degree of sintering in FeAlNa5 was lower than that in FeAl and FeAlNa1 (over 15 redox cycles).

Figure S16: SEM of the cycled (reduced and oxidized states) oxygen carriers after being subjected to 15 redox cycles in a fixed bed.

Figure S17: HAADF images and elemental mapping of the cycled oxygen carriers (15 redox cycles, oxidation step); H_2O/N_2 exposure followed by O_2/N_2).