Supporting Information

Highly Reversible Zinc Metal Anodes Enabled by Protonated Melamine

Cong Huanga, Xin Zhaoa, Yisu Haoa, Yujie Yanga, Yang Qiana, Ge Changa, Yan Zhanga, Qunli Tanga, Aiping Hua, Zhixiao Liu*a, and Xiaohua Chen*a

a College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan university, Changsha 410082, P. R. China.

Corresponding authors:

\textit{E-mail: xiaohuachen@hnu.edu.cn; zxliu@hnu.edu.cn}
Experimental Procedures

Electrolyte preparation: 2 M ZnSO₄ electrolyte was prepared by dissolving Zn salts (ZnSO₄·7H₂O, Sinopharm, AR) in deionized water. The pH of 2 M ZnSO₄ electrolyte was measured to be 3.8. The control electrolytes were prepared by adding different concentration (0.1, 0.3, and 0.5 g L⁻¹, respectively) of melamine (C₃H₆N₆, Sinopharm) into 80 mL 2 M ZnSO₄ electrolyte. The optimized electrolyte was 2M ZnSO₄ with 0.3 g L⁻¹ melamine and denoted as Mel/ZnSO₄ electrolyte. The pH of Mel/ZnSO₄ electrolyte was measured to be 4.8. 0.5 M Na₂SO₄ electrolyte was first prepared by dissolving Na₂SO₄ (Sinopharm, AR) in deionized water. The pH of 0.5 M Na₂SO₄ electrolyte was then adjusted to 4 by adding ultra-dilute sulfuric acid solution for hydrogen evolution reaction tests.

Materials Characterization: The Zn deposition morphology was acquired by the field-emission scanning electron microscopy (FESEM, Hitachi S-4800). Bruker Vertex 70 Fourier transform infrared (FTIR) spectrophotometer was employed to collect the FTIR spectra of as-prepared electrolyte. The Raman spectra of as-prepared electrolyte were recorded by HORIBA JY LabRAM HR Evolution. The surface compositions of Zn anodes were investigated by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi) equipped with Al Ka X-ray source (2 kV and 6 mA). The Zn anode was washed with deionized water before the XPS characterization. The SHIMADZU UV 2600 was adopted to collect the Uv-vis spectra of relevant electrolyte.

Electrochemical Characterization: The chronoamperometry curve was collected at a fixed potential of −1.4 V in the three-electrode system using Zn plate (1×1 cm) as working electrode, Pt plate (1×1 cm) as counter electrode, and Ag/AgCl as reference electrode. The electrochemical impedance spectroscopy (EIS) of the Zn-Zn cells was conducted on a CHI 660e electrochemical workstation over the frequency range of 100 kHz to 0.01 Hz. The differential capacitance curves are plotted based on the results from alternating current voltammetry tests (the amplitude is 5 mV, with a potential range extended from 1.0 to 0 V versus Zn²⁺/Zn). Tafel plots were measured by scanning
between −0.8 and −1.1 V at 1 mV s\(^{-1}\) with Zn plate as the working electrode and counter electrode, and Ag/AgCl as the reference electrode, respectively. The hydrogen evolution reaction potential was recorded using linear sweep voltammetry method with a scan rate of 5 mV s\(^{-1}\) in Na\(_2\)SO\(_4\) and MeI/Na\(_2\)SO\(_4\) electrolyte. Zn symmetric cells (ZBs) were assembled by sandwiching the glass fiber (separators) between commercial Zn plates (70 \(\mu\)m, 45 mAh cm\(^{-2}\)) in CR2032-type cell filled with MeI/ZnSO\(_4\) or ZnSO\(_4\) electrolyte. Zn-Cu half cells were assembled using Zn plate (70 \(\mu\)m, 45 mAh cm\(^{-2}\)) as anode, Cu foils (20 \(\mu\)m) as cathode, and glass fiber as separator. Zn ions hybrid supercapacitors were assembled using Zn plate (70 \(\mu\)m, 45 mAh cm\(^{-2}\)), activated carbon cloth, and hydrophilic mixed cellulose membrane as anode, cathode, and separator, respectively. The electrolyte volume for Zn ions hybrid supercapacitors is controlled to be 40 \(\mu\)L. The activated carbon cloth was prepared by a simple air calcination method at 400 °C for 2 hours according to the previous study\(^{S1, S2}\).

DFT calculation method: The DFT calculation was performed by the Vienna Ab-initio Simulation Package (VASP), and the exchange–correlation energy was approximately described by the Perdew-Burke-Ernzerhof (PBE) functional based on the generalized gradient approximation (GGA). In all calculation, a cutoff energy with the value of 400 eV was used for the plane wave basis, and the convergence criteria for the ionic relaxation and the electronic self-consistent calculation were set to 0.02 eV Å\(^{-1}\) and 10\(^{-5}\) eV, respectively. The Zn (0001) surface is modeled by a five-layers 5×5 surface supercell (25 Zn atoms per layer) with only considering the \(\Gamma\) point for saving the computational resources. The long-range dispersion correction for the van der Waals interaction was implemented through the DFT-D2 method in all calculation.
Fig. S1. The FTIR of Mel/ZnSO$_4$ and ZnSO$_4$ electrolyte.

Fig. S2. The Raman spectrum of Mel/ZnSO$_4$ and ZnSO$_4$ electrolyte.
Fig. S3. The pH of Mel/ZnSO$_4$ and ZnSO$_4$ electrolyte.

Fig. S4. The EIS curves of Zn|Zn symmetric cells tested in Mel/ZnSO$_4$ and ZnSO$_4$ electrolyte.
Fig. S5. The differential capacitance curves of Zn/Cu half cells tested in Mel/ZnSO$_4$ and ZnSO$_4$ electrolyte.

Fig. S6. The N1s spectrum of a) Zn anode immersed in Mel/ZnSO$_4$, b) melamine powder, and c) Zn anode immersed in ZnSO$_4$ electrolyte.
Fig. S7. a) The adsorption behaviour of Zn\(^{2+}\) on Zn (0001) modified by MelH\(^+\). b) The comparison of Zn\(^{2+}\) adsorption energy on the Zn (0001), and MelH\(^+\)/Zn (0001).

Fig. S8. Voltage profiles of Zn|Zn symmetric cells cycled in ZnSO\(_4\) based electrolyte with different concentration of Mel additives.

As presented in Fig. S8, Zn|Zn symmetric cells cycled in ZnSO\(_4\) electrolyte with 0.3 g L\(^{-1}\) Mel additives delivers a longer cycle life of 3000 h than that in ZnSO\(_4\) electrolyte with 0.1 g L\(^{-1}\) Mel additives. When the Mel concentration further increased to 0.5 g L\(^{-1}\), the as-prepared electrolyte exhibits white precipitation, which may be attributed to the
formation of Zn₄SO₄(OH)₆·xH₂O under the pH of 5.2, which is similar to the recently reported work[S3]. Therefore, it is concluded that the optimized concentration of Mel additive is 0.3 g L−1.

![SEM images](image1.png)

Fig. S9. The top-view SEM image of Zn|Zn symmetric cells using (a) ZnSO₄ and (b) Mel/ZnSO₄ electrolyte at 40th cycle (scale bar: 4 μm).

![Voltage profiles](image2.png)

Fig. S10. Voltage profiles of Zn|Zn symmetric cells in Mel/ZnSO₄ electrolyte at the selected cycles.
Fig. S11. (a) The nucleation overpotential evolution of Zn|Zn symmetric cells using ZnSO$_4$ and Mel/ZnSO$_4$ electrolyte. (b) The nucleation overpotential of Zn|Zn symmetric cells at the selected cycle.

Fig. S12. (a) The illustration of mid-point voltage collected at discharge/charge capacity of 1 mAh cm$^{-2}$. (b) The mid-point voltage evolution of Zn|Zn symmetric cells using Mel/ZnSO$_4$ electrolytes.
Fig. S13. Cycle stability of Zn|Zn symmetric cells using ZnSO$_4$ and Mel/ZnSO$_4$ electrolyte.

Fig. S14. Voltage profiles of Zn|Cu half cells using Mel/ZnSO$_4$ electrolytes at the selected cycles.
Fig. S15. The charge-discharge curves of ZHS using Mel/ZnSO$_4$ and ZnSO$_4$ electrolytes.

Fig. S16. The rate performance of ZHS tested in ZnSO$_4$ and Mel/ZnSO$_4$ electrolyte.
Fig. S17. The charge-discharge curves of ZHS in ZnSO$_4$ electrolytes at 133$^{\text{th}}$ cycle.

Fig. S18. The digital photo of glass fiber (GF) and hydrophilic mixed cellulose membrane (HMCM).
Table S1. The CPC comparison of Zn symmetric cells in Mel/ZnSO₄ electrolyte with previous literatures using other strategies.

<table>
<thead>
<tr>
<th>strategy</th>
<th>Test condition</th>
<th>Cycle time (hour)</th>
<th>Cycle number</th>
<th>CPC (mAh cm⁻²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>piZn</td>
<td>4 mA cm⁻²; 2 mAh cm⁻²</td>
<td>300</td>
<td>300</td>
<td>600</td>
<td>S⁴</td>
</tr>
<tr>
<td>Zn (002)</td>
<td>1 mA cm⁻²; 1 mAh cm⁻²</td>
<td>500</td>
<td>250</td>
<td>250</td>
<td>S⁵</td>
</tr>
<tr>
<td>cellulose-graphene coated Zn</td>
<td>0.25 mA cm⁻²; 0.5 mAh cm⁻²</td>
<td>5500</td>
<td>1375</td>
<td>687.5</td>
<td>S⁶</td>
</tr>
<tr>
<td>Zn@ZnF₂</td>
<td>1 mA cm⁻²; 1 mAh cm⁻²</td>
<td>800</td>
<td>400</td>
<td>400</td>
<td>S⁷</td>
</tr>
<tr>
<td>Zn/Sn(200)</td>
<td>1 mA cm⁻²; 1 mAh cm⁻²</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>S⁸</td>
</tr>
<tr>
<td>ZCS−Zn</td>
<td>2 mA cm⁻²; 4 mAh cm⁻²</td>
<td>1200</td>
<td>300</td>
<td>1200</td>
<td>S⁹</td>
</tr>
<tr>
<td>ZF@F−TiO₂</td>
<td>1 mA cm⁻²; 1 mAh cm⁻²</td>
<td>460</td>
<td>230</td>
<td>230</td>
<td>S¹⁰</td>
</tr>
<tr>
<td>MXene coated Zn</td>
<td>0.2 mA cm⁻²; 0.2 mAh cm⁻²</td>
<td>800</td>
<td>400</td>
<td>80</td>
<td>S¹¹</td>
</tr>
<tr>
<td>Mel additive</td>
<td>2 mA cm⁻²; 2 mAh cm⁻²</td>
<td>3000</td>
<td>1500</td>
<td>3000</td>
<td>This work</td>
</tr>
</tbody>
</table>
References

