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Experimental Procedures

Materials and Characterization

All of the chemical reagents were purchased commercially and used without purification. The aziridines substrates were synthesized according to
the literature. Powder X-ray diffraction (PXRD) was fulfilled by an Ultima IV X-ray diffractometer with Cu-Ko radiation. Thermogravimetric
analysis was completed by an EVO2G-TG TG-DTA analyzer under the air atmosphere. NMR spectra were performed on a 400 MHz Bruker 400
spectrometer in CDCl;. Fourier transform infrared (FT-IR) spectra were obtained by the Nicolet IS10 instrument.

Synthesis of aziridines.
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According to previous literature,!'! the common aziridines substrates have been synthesized and the specific steps are as follows: Firstly, 0.2 mol
bromine immersing in 40 mL CH,Cl, was slowly dropped into 40 mL CH,Cl, with 0.2 mol dimethy] sulfide under an ice-salt bath condition. Orange
solid A1, bromodimethyl sulfonium bromide, was gradually formed during stirring overnight. The resultant A1 was washed with diethyl ether for
several times and dried. Next, Al was dissolved in 160 mL of CH3CN, and then 160 mmol styrene was added dropwise under ice bath conditions.
White solid A2 was obtained after stirring overnight, and then washed with fresh CH;CN for several times. Finally, 20-50 mmol amine was dropped
into 20 mL H,O solution with 10 mmol A2 and stirred for overnight at room temperature. After the reaction, 20 mL saturated salt solution was
dropped into this system. The mixture was extracted with diethyl ether (20 mL) for three times and dried with anhydrous MgSO,. The product
aziridines were obtained by rotary evaporation.

Synthesis of {Na[Tb,(u;-OH)(BTB),]-6DMA}, (2)
The synthesis method of Compound 2 was similar to compound 1 except that Dy(OAc); was replaced as Tb(OAc);. Elemental analysis (%) for
compound 2 (NaTb,C75HgsO19Ng), caled: C 53.49, H 4.89, N 4.79; Found: C 53.66, H 4.68, N 4.62.

Gram-scale experiment of CS, and aziridines.
25 mg compound 1, 0.05 mmol TBAB, 10 mmol aziridine substrate (1.47 g) and 50 mmol CS, (3.8 g) were sealed in a 50 mL Schlenk tube, and
stirred at 60 °C for 12 h. The corresponding yield was analyzed by '"H NMR with 1,3,5-trimethoxybenzene as an internal standard.

Catalytic recyclable experiments of CS, and aziridines.

After the first cycle reaction, the catalyst was isolated by centrifugation, washed with fresh CH,Cl, for three times and dried naturally. The recovered
catalyst was used for the next cycle.
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Supplemental Figures

Figure S1. The coordinated environments and the polyhedral representation of Dy'! (a, b) and [Dy,] cluster unit (¢) in compound 1. (d) The (3, 12)-
connect topology of 1. (e) The two different 1D channels in the 3D framework of 1 in packing mode along b-axis.

Figure S2. The [Dyy]-cage in compound 1, and the similar triangular window size of 1.7 nm x1.7 nm x1.7 nm.

S3



— Simulated

Compound 1

Compound 2

10 20 30 40 50
26/ degree

Figure S3. The PXRD patterns of the simulated one from the single-crystal data (black), as-synthesized compound 1 (red) and 2 (blue).
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Figure S4. The IR spectra of H;BTB ligand (black), compound 1 (red) and 2 (blue).

The peaks from 3200 to 2700 cm! belong to the stretching vibration of -OH in -COOH groups and the stretching vibration of aromatic rings in the
H;BTB ligand. In compound 1, the position and intensity of characteristic peaks have changed, indicating that the -COOH group in the ligand
coordinates with Ln?*, and the characteristic peaks shift from 1700 ~ 1638 cm™ to 1626 ~ 1511 cm™,
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Figure S6. The CO, adsorption/desorption of 1 at 298 K.
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Figure S7. The thermogravimetric analyses curve of compound 1 and 2.
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Figure S8. Variable-temperature PXRD patterns of 1.
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Figure S9. The thermogravimetric analyses curve (a) and the PXRD patterns (b) of compound 1 after the solvent exchange with MeOH and drying
at 80 °C for 2 h.
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Figure S10. The consistent PXRD patterns with simulated data of 1 after five cycles for the cycloaddition of CS, and aziridines.
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Figure S11. Catalytic filtration experiments for the cyclization reaction of CS, and aziridines.

In a typical experiment, 25 mg catalyst 1, 0.05 mmol TBAB, 1 mmol 1-ethyl-2-phenylaziridine and 5 mmol CS; are sealed in a Schlenk tube. The
mixture is stirred at 60 °C for different times, and the products are determined by 'H NMR. After 3 hours of reaction, catalyst 1 is isolated from this
reaction system by centrifugation. The filtrate is placed in another new reactor to continue the reaction under optimal reaction conditions for an
additional 9 hours. All of these processes have been analyzed by '"H NMR and the experimental results are shown in Figure S11. The results show

that the substrate can not convert after separating catalyst 1 from the reaction tube, which demonstrates compound 1 can act as an efficient
heterogeneous catalyst for the cycloaddition reaction of CS, and aziridines.
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Figure S12. The PXRD patterns of compound 1 for the gram-scale catalytic experiment after 24 h.
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Figure S13. The single-crystal structure of 3-ethyl-5-phenylthiazolidine-2-thione. Thermal ellipsoids are set at the 50% probability level.
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Figure S14. The 3D framework of Dy-MOF-1 (a) and its PXRD patterns (b).>!
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Figure S15. The 3D framework of Dy-MOF-2 and its PXRD patterns. (!
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Figure S16. The 3D framework of Dy-MOF-3 (a) and its PXRD patterns (b). [4]

S10



Le™y
M@Av ) | ]

@/ﬁN\/ + TBABr
ll " ll IIL.

[
e e N d T
v L]
| -
3 | ¥ T ¥ I . T L T - T L T X T
160 140 120 100 80 60 40 20 0

fl/ppm

Figure S17. 3C NMR spectral to analyze the activation of aziridine substrate by catalysts in different systems (in CDCl;).
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Figure S18. 'H NMR spectral to analyze the activation of aziridine substrate by individual 1 for different times (in CDCl;). Reaction conditions: 25
mg compound 1 and 1 mmol 1-ethyl-2-phenylaziridine are sealed in a Schlenk tube at 60 °C for different times.
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Figure S19. '"H NMR spectral to monitor the entire cycloaddition process of aziridine and CS, by compound 1 and TBAB for different times (in
CDCl).

As the time increasing, the characteristic protons of 1-ethyl-2-phenylaziridine (substrate) gradually shift from & = 2.29 ppm to 2.08 ppm, and at the
same time, the characteristic peaks of the corresponding product appear at & = 4.84, 4.38, 4.07 and 3.87 ppm and their intensities enhance. This result
indicates compound 1 can effectively catalyze the conversion of aziridines and CS, into 3-ethyl-5-phenylthiazolidine-2-thione.
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Figure S20. Possible reaction mechanism of the cycloaddition of CS, and aziridines by compound 1.
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Figure S21. (a) The yields of oxazolidinones for the cycloaddition of CO, and aziridines by catalyst 1. (b) The consistent PXRD patterns with
simulated data of 1 after recyclable experiments.
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Figure S22. Possible reaction mechanism of the cycloaddition of CO, and aziridines by compound 1.
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Supplemental Tables

Table S1. Crystal data and structure refinement for 1.

1 2
Empirical formula NaDy,CgoHog; 5020.5Ne s NaTb,Cr5HgsO19Ng
Formula weight 1820.10 1751.38
Temperature/K 123.10(14) 293(2)
Crystal system monoclinic monoclinic
Space group P2y/n P2y/n
a/A 20.5751(4) 20.7046(4)
b/A 19.0251(4) 19.1345(3)
c/A 27.2310(6) 26.5347(12)
ol° 90 90
plr° 102.224(2) 101.404(3)
/° 90 90
Volume/A3 10417.7(4) 10304.3(5)
V4 4 4
F(000) 2364.0 2352.0
Goodness-of-fit on F? 1.090 1.029
Final R indexes [/>=2c (I)] R, =0.0250, wR, = 0.0685 R; =0.0662, wR, = 0.1547
Final R indexes [all data] R;=0.0312, wR,=0.0712 R, =0.1096, wR, =0.1777
CCDC 2034446 2034449
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Table S2. Control experiments of cycloaddition of CS, and aziridines.[?

Et cs, S
N > S
o /Q Cat. oh N Et
Entry Catalyst 1 (mg) Temp (°C) Yield (%)™
1 25 30 74
2 25 40 78
3 25 50 79
4 25 60 87
5 25 70 87
6l 25 60 69
71d] 25 60 78
8lel 25 60 74

[a] Reaction conditions: 1-ethyl-2-phenylaziridine (1.0 mmol), CS, (5.0 mmol), compound 1 (25 mg based on metal
center, about 2.74 mol%), TBAB (0.05 mmol), solvent-free, 12 h. [b] Using 1,3,5-trimethoxybenzene as an internal
standard to determine total yield of the product by 'H NMR. [c] 9 h. [d] TBAI (0.05 mmol) as co-catalyst. [e] Cs,CO;
(0.05 mmol) as co-catalyst.

To explore the optimal reaction system, 1-ethyl-2-phenylaziridine was selected as a model substrate to analyze under different conditions (Table S2).
25 mg compound 1, 0.05 mmol TBAB, 1 mmol 1-ethyl-2-phenylaziridine and 5 mmol CS, have been sealed in a Schlenk tube without additional
solvent at different temperatures (Entries 1-5). As the temperature rises, the yield of 3-ethyl-5-phenylthiazolidine-2-thione increases from 74% to
87%. However, higher temperatures do not result in more substrate conversion, so the optimal reaction temperature is 60 °C. Additionally, the yield
of the product decreased after shortening the reaction time from 12 h to 9 h (Entry 6). Finally, the types of additives are also investigated. Compared
with tetrabutylammonium iodide (TBAI) and Cs,CO;, tetrabutylammonium bromide (TBAB) exhibits better synergistic catalytic activity due to the
higher nucleophilic offensive capabilities (Entries 7 and 8). Based on the above experimental results, the optimal reaction system is that 25 mg
compound 1, 0.05 mmol TBAB, 1 mmol 1-ethyl-2-phenylaziridine and 5 mmol CS, react under 60 °C for 12 h.

Table S3. The ICP results of compound 1 after catalytic recyclings for the cycloaddition of CS, and aziridines.

Compound 1 Amount of Dy in filter liquor after recyclings (ppm)  Mass loss percent (%)
After first catalytic recyclings 0.039 0.03
After fifth catalytic recyclings 0.152 0.12
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Table S4. The reported catalysts for the cycloaddition of CS, with aziridines.

Catalyst Amount Temp(°C)  Time(h)  Yield(%) TONE TOFI®! Reference
TBAB 5 mol% r.t. 24 94 18.8 0.78 [5]
2-Pyridinecarboxaldehyde oxime 20 mol% 40 4 98 4.9 1.23 [6]
Tributylphosphine 10 mol% Refulx 10 98 9.8 0.98 [7]
Polystyryl-supported tertiary amine 5 mol% 100 2.5 88.8 17.8 7.10 [8]
L'Bu[N(SiMes),]- THF}, 1 mol% 45 ) 92 921l 1.27 [9]
({)I;'{a)[(%%g‘i] 6.5DMAILO}, 274mol% 60 12 84 6131 511 This work

[a] TON: Turnover number = n(product)/n(catalyst). [b] TOF: Turnover frequency = TON/t(reaction time). [c] 7 mmol substrate. [d]
10 mmol substrate.
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Table S5. Crystal data and structure refinement for 3-ethyl-5-phenylthiazolidine-2-thione.

Identification code

3-ethyl-5-phenylthiazolidine-2-thione

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group

alA

b/A

c/A

o/°

pr°

y°

Volume/A3

Z

F(000)

Goodness-of-fit on F?
Final R indexes [>=2c (I)]
Final R indexes [all data]

CCDC

Ci1Hi3NS,

223.34

293(2)

monoclinic

Cc

21.386(2)

5.4755(6)

10.7641(11)

90

118.825(12)

90

1104.3(2)

4

472.0

1.110

R, =0.0918, wR, = 0.2340
R, =0.0956, wR, = 0.2383

2096097
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Table S6. Control experiments of cycloaddition of CO, with aziridines.[!

Et CO, (0] (0]

N o) . oX

N
A Cat. ph/K/N\Et K( SEt
Ph
Ph
1S 2S 3S
Entry Catalyst 1 (mg) Temp (°C) Yield (%) Regio-sell!
1 25 30 >99 97:3
2 25 40 97 97:3
3 25 50 96 97:3
4 25 60 >99 96:4
5ldl 25 30 49 87:13
6l 25 30 65 92:8
7 25 30 10 73:27

[a] Reaction conditions: 1-ethyl-2-phenylaziridine (2.0 mmol), CO, (2.0 MPa), compound 1 (25 mg, based on metal
center, about 1.37 mol%), TBAB (0.05 mmol), solvent-free, 12 h. [b] Using 1,3,5-trimethoxybenzene as an internal
standard to determine total yield of the products 2S and 3S by '"H NMR. [c] The molar ratio of 2S to 3S. [d] CO, (0.5
MPa). [e] CO, (1.0 MPa). [f] Individual 1 as catalyst, without TBAB.

To identify the optimum reaction condition, 1-ethyl-2-phenylaziridine as the model substrate is selected to explore under the various conditions
(Table S6). 25 mg compound 1, 0.05 mmol TBAB and 2 mmol 1-ethyl-2-phenylaziridine are sealed in an autoclave under the different reaction
systems. With the rise of temperature, the yields of 3-ethyl-5-phenyloxazolidin-2-one (2S) and 3-ethyl-4-phenyloxazolidin-2-one (3S) do not
significantly increase (Entries 1-4). Hence, the reaction is performed at 30 °C. In addition, the reaction pressure is also investigated. Under 0.5 MPa
of CO, at 30 °C for 12 h, 1 displays a low catalytic activity. After extending pressure to 1 MPa, the yields of 2S and 3S increase to 65%. Further
increasing the pressure to 2 MPa, the yield of the product is close to 100% (Entries 1, 5 and 6). Finally, when no co-catalyst adds into the reaction
system, the yield of the product is 10%, indicating compound 1 and TBAB can catalyze the cycloaddition of CO, and aziridines synergistically
(Entry 7). Therefore, the optimal reaction condition is 30 °C and 2 MPa of CO, for 12 h with TBAB as co-catalyst.
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Table S7. Cycloaddition reactions of various aziridines with CO,.[

R2 CO, O O
o o, oA
N
< /\ Compound 1 R1/K/N\R2 K( ~R,
1A 2A 3A
Entry Substrate Main product Yield (%) Regio-sell!

1 et ©/K/N\/ >99 97:3
2 ~N ©/K/N\/\ 98 97:3

o<
N
4 ©/A NN ©/K/N\/\/\/ 46 99:1
N
5 N 26 96:4
T oY
6 b Ne 95 98:2
HaC G
3
N\/ O—‘q
7 N~ 85 99:1
H;CO H.CO
3

Ne_- 04
8 /@/K/N\/ 96 96:4
cl
[¢]]
Ne_- 0’</
9 /@/K/N\/ 76 96:4
Br
Br

[a] Reaction conditions: aziridine (2.0 mmol), CO, (2.0 MPa), catalyst 1 (25 mg, based on metal center, about 1.37 mol%),
TBAB (0.05 mmol), solvent-free, 30 °C, 12 h. [b] Using 1,3,5-trimethoxybenzene as an internal standard to determine by 'H
NMR. [c] The molar ratio of 2A to 3A.
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Table S8. The ICP results of compound 1 after fifth catalytic recyclings for the cycloaddition of CO, and aziridines.

Compound 1 Dy

Filter liquor after fifth catalytic recyclings (ppm) 0.002

Table S9. Control experiments of the cycloaddition of CO, and aziridines.?!

Entry Catalyst (mg) Yield (%) Regio-sell*]
11 ] 34 98:2

2 Compound 1 >99 97:3

3lel Compound 1 10 73:27

411 TBAB 72 95:5

5lel Dy(OAc); 75 95:5

6inl H;BTB 29 96:4

76 Dy(OAc)s+ H;BTB 85 93:7

[a] Reaction conditions: 1-ethyl-2-phenylaziridine (2.0 mmol), TBAB (0.05 mmol), CO, (2.0 MPa), solvent-free, 30 °C,
12 h. [b] Using 1,3,5-trimethoxybenzene as an internal standard to determine total yield of the products by 'H NMR. [c]
The molar ratio of 2S to 3S. [d] No catalyst and TBAB. [e] Individual compound 1 (25 mg). [f] Individual TBAB (0.05
mmol). [g] Dy(OAc); (14.5 mg, based on metal center, about 1.4 mol%). [h] H;BTB (20 mg). [i] Dy(OAc); (14.5 mg)
+ H;BTB (20 mg).

Some control experiments are carried out to investigate the reasons for high catalytic ability of 1 for the cycloaddition of CO, and aziridines. The
corresponding results were summarized in Table S8. In the absence of the additive TBAB, individual compound 1 exhibits a lower catalytic activity.
After adding TBAB, the two synergistically promote this reaction and completely convert the aziridines substrate into the corresponding products
(99%, Entries 3 and 4). Due to the inherent Lewis acidity of Ln"" ions, the catalytic ability of individual Dy(OAc); under optimal reaction conditions
is analyzed, and its catalytic performance is moderate (Entry 5). When H;BTB ligand is added into this system and performs simple mechanical
mixing, the yield of the product increases, indicating that Dy(OAc); and H;BTB ligand have a synergistic effect to promote the reaction (Entries 6
and 7).
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1-Butyl-2-phenylaziridine
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1-Isopropyl-2-phenylaziridine
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(4-Methoxyphenyl)-1-ethylaziridine
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(4-Bromophenyl)-1-ethylaziridine

00— -
o1
_:_Hv Feie
0T
o1 T
oo -= bt
€8T 1 s
o0
ey I
Pt
sT7 LG
977 I
e et
0F T R
i
FFT
okt
e
o
lat
o
z.
R
o
(=}
bl
r
=
=
a T
e %
s g6t
e — |
6EL—= 807
il IJ |

10 0.5 0.0 =

15

7.0 65 6.0 55 5.0 45 4.0 as a0
11 (ppm)
S25

7.5

8.0




The '"H NMR and 3C NMR spectral for thiazolidine-2-thiones.
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3-Hexyl-5-phenylthiazolidine-2-thione
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3-Isopropyl-S-phenylthiazolidine-2-thione
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Ethyl-5-(4-chlorophenyl)thiazolidine-2-thione
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Ethyl-5-(4-Bromophenyl)thiazolidine-2-thione
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3-Isopropyl-5-phenyloxazolidin-2-one
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Ethyl-5-p-tolyloxazolidin-2-one
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Ethyl-5-(4-methoxyphenyl)oxazolidin-2-one
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Ethyl-5-(4-chlorophenyl)oxazolidin-2-one
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Ethyl-5-(4- Bromophenyl)oxazolidin-2-one
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