Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for The slush-like polar structure for the high energy storage performance in

Sr_{0.7}Bi_{0.2}TiO₃ lead-free relaxor ferroelectric thin film

Jin Luo^a, Hao Zhu^a, Tianyang Zheng^a, Hao Qian^{a, *}, Yunfei Liu^{a, b, c, *},

Yinong Lyu^{a, b, c,} *

^a The State Key Laboratory of Materials-Oriented Chemical Engineering, College of

Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

^b Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM),

Nanjing 210009, China

^c Jiangsu Collaborative Innovation Center for Advanced Inorganic Function

Composites, Nanjing 210009, China

E-mail addresses: 202010006720@njtech.edu.cn (H. Qian); yfliu@njtech.edu.cn (Y.

Liu); yinonglu@njtech.edu.cn (Y. Lyu)

Figure S1. a) Grazing incidence X-ray diffraction (GIXRD) pattern of the SBT thin film. b) Surface morphology and cross-section microstructure of the SBT thin film. GIXRD result shows a perovskite structure of the SBT thin film without obvious impurities. Surface and cross-section morphologies exhibit that the SBT thin film has dense microstructures with thickness at around 300 nm.

Figure S2. The HAADF image inside a single grain viewed along the [10] zone axis. The pale spots correspond to the B-site Ti columns, the brighter spots to the A-site Sr/Bi columns. The inset shows the projected atomic columns along the [10] zone axis.

Figure S3. The HAADF image of the area marked with a white square in Figure 1b. The superimposed arrows in the B-site atoms represent displacement of the Ti atoms with respects to the ideal mass center of the two A-site neighbor atoms. The position center of the A and B-site atoms are determined by 2D Gaussian fitting. The length and orientation of the arrows show the magnitude and direction of the B-site displacement from the corresponding experimental A-site mass center.

Figure S4. a) HAADF Z-contrast image. b) Integrated line profiles of the A-site Sr/Bi atom columns marked with green rectangle in (a).

Figure S5. a) Leakage current of the SBT thin film as a function of the electric field. b) Leakage current of SBT at 400 kv cm⁻¹. c) ln*J* is plotted as a function of ln*E*. The red straight line is plotted according to the Ohmic conduction mechanism, which dominates the leakage current. The Ohmic conduction mechanism can be described by $J = nq\mu E$, where *J*, *n*, *q*, μ and *E* are the leakage current, densities of the carriers, electron charge, carrier mobility and electron field, respectively.