Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ultrahigh Reversible Lithium Storage of Hierarchical Porous Co-Mo

Oxides via Graphene Encapsulation and Hydrothermal S-Doping

Jiatao Chen^{a,b}, Kongjun Zhu^{a,*}, Penghua Liang^{a,b}, Meng Wu^{a,b}, Yu Rao^{a,b}, Hongjuan Zheng^a, Jinsong Liu^b, Kang Yan^a and Jing Wang^a

^a State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace

Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

^b College of Materials Science and Technology, Nanjing University of Aeronautics and

Astronautics, Nanjing, 210016, China.

*Corresponding author: kjzhu@nuaa.edu.cn (Kongjun Zhu).

Figure S1. a) SEM image, b) TEM image and c) XRD patterns of ZIF-67 crystals

Figure S2. a) SEM image, b) TEM image and c) XRD pattern of CoMoO₄-Co(OH)₂ NPs

Figure S3. XRD patterns of CoMoO₄-Co(OH)₂@rGO and CoMoO₄-Co(OH)₂/S@rGO NPs

Figure S4. a) SEM image of CoMoO₄-CoO/S@rGO. b) SEM image of CoMoO₄-CoO@rGO. c) TEM image of CoMoO₄-CoO/S@rGO. d) TEM image of CoMoO₄-CoO@rGO.

Figure S5. XRD pattern of CoO/S@rGO.

Figure S6. XPS survey spectra of CoMoO₄-CoO/S@rGO and CoMoO₄-CoO@rGO NPs.

Figure S7. High-resolution a) O 1s, b) C 1s XPS spectra of CoMoO₄-CoO/S@rGO. High-resolution c) O 1s, b) C 1s XPS spectra of CoMoO₄-CoO@rGO.

Figure S8. Raman spectra of CoMoO₄-CoO/S@rGO and CoMoO₄-CoO@rGO NPs.

Figure S9. a) TGA curve of CoMoO₄-CoO/S@rGO NPs under air atmosphere. b) XRD pattern of powders obtained after TG test.

From room temperature to 200 °C, the weight loss could due to the release of H₂O and the little weight increase at the beginning could attribute to dry powders absorbing moisture from the air. The main weight variation (~14.33 wt%) from 200 °C to 600 °C originates from the combustion of the rGO and the oxidation of CoO to Co₃O₄, which can be seen from the XRD pattern of powders obtained after TG test (Figure S10b). From Table S1, we can roughly estimate the proportion of CoO in CoMoO₄-CoO/S is ~65% according to the Mo and Co atomic content. Thus, the weight $65\% \times 74.9$

increase from CoO to Co₃O₄ is ~2.76 wt% ($\frac{65\% \times 74.9 + 35\% \times 218.9}{65\% \times 74.9 + 35\% \times 218.9} \times 7.1\%$). Therefore, the rGO content in the CoMoO₄-CoO/S@rGO NPs is around 17.09 %.

Figure S10. a) The first three cycles of CV curves at 0.1 mV s⁻¹ of CoMoO₄-CoO@rGO electrode. b) The first three charge/discharge curves of CoMoO₄-CoO@rGO electrode at 0.5 A g⁻¹.

 $\label{eq:sigma} Figure \ S11. \ The \ first \ three \ cycles \ of \ CV \ curves \ at \ 0.1 \ mV \ s^{-1} \ of \ a) \ the \ CoMoO_4-CoO/S \ electrode, \\ b) \ CoO/S (@rGO \ electrode, \ and \ c) \ rGO \ electrode.$

Figure S12. a) Discharge state curves of GITT measurement for CoMoO₄-CoO/S@rGO and CoMoO₄-CoO@rGO electrodes at 0.5 A g^{-1} . b) The D_{Li⁺} of CoMoO₄-CoO/S@rGO and CoMoO₄-CoO@rGO electrodes during the discharge process at 0.5 A g^{-1} .

The Li-ion diffusion coefficients of $CoMoO_4$ -CoO/S@rGO and CoMoO_4-CoO@rGO electrodes can be measured according to the following Equation (1)

$$\frac{4L^2}{D_{\rm Li}^+ = \pi\tau} \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \tag{1}$$

where L and τ are the thickness of the electrodes (cm) and the duration of the current pulse (s), respectively. ΔE_s is the change in steady-state voltage (V) for a single-step GITT measurement, and ΔE_{τ} is the voltage change (V) during one discharge pulse regardless of IR drop.

Table S1. Elemental quantification of CoMoO₄-CoO/S@rGO

	Co (wt. %)	Mo (wt. %)	S (wt. %)
CoMoO ₄ -CoO/ <u>S@</u> rGO	21.43	7.4	0.35

Materials	Current density (A g ⁻¹)	Cycle number	Specific capacity (mAh g ⁻¹)	Ref.
CoMoO4-CoO/S@rGO	0.5	150	1103	This work
	2.0	300	700	
CoO-NCNTs	0.5	2000	583	1
CoO@C	0.5	300	890	2
CoO/N, S-C	1.0	500	805	3
CoO/C YSNSs	1.0	1000	672	4
CoO-graphene hydrogel	0.1	100	1010	5
CoO/Co ₂ Mo ₃ O ₈ @MXene	2.0	1200	545	6
CoC ₂ O ₄ @CoO/Co	0.2	200	837	7
Co ₃ O ₄ /CoO/Co foam	0.1	50	989	8
CoO/MnCo ₂ O _{4.5}	1.0	120	657	9
CoO/CoFe ₂ O ₄ /EG	1.0	700	890	10

Table S2. Comparison of specific capacity of CoMoO₄-CoO/S@rGO electrode with some CoObased materials

- 1 Y. Pang, S. Chen, C. Xiao, S. Ma and S. Ding, J. Mater. Chem. A, 2019, 7, 4126-4133.
- 2 F. Wu, S. Zhang, B. Xi, Z. Feng, D. Sun, X. Ma, J. Zhang, J. Feng and S. Xiong, Adv. Energy Mater., 2018, 8.
- 3 F. Wang, H.-Y. Zhuo, X. Han, W.-M. Chen and D. Sun, J. Mater. Chem. A, 2017, 5, 22964-22969.
- 4 S. Wang, J. Teng, Y. Xie, Z.-W. Wei, Y. Fan, J.-J. Jiang, H.-P. Wang, H. Liu, D. Wang and C.-Y. Su, *J. Mater. Chem. A*, 2019, **7**, 4036-4046.
- 5 G. Binitha, A. G. Ashish, D. Ramasubramonian, P. Manikandan and M. M. Shaijumon, *Adv. Mater. Interfaces*, 2016, **3**.
- 6 X. Zhao, H. Xu, Z. Hui, Y. Sun, C. Yu, J. Xue, R. Zhou, L. Wang, H. Dai, Y. Zhao, J. Yang, J. Zhou, Q. Chen, G. Sun and W. Huang, *Small*, 2019, **15**, e1904255.
- 7 Z. He, L.-a. Huang, J. Guo, S.-e. Pei, H. Shao and J. Wang, *Energy Storage Mater.*, 2020, 24, 362-372.
- 8 H. Park, K. Kim, K. Jeong, J. S. Kang, H.-H. Cho, B. Thirumalraj, Y.-E. Sung, H. N. Han, J.-H. Kim, D. C. Dunand and H. Choe, *Appl. Surf. Sci.*, 2020, **525**.
- 9 L. Ni, W. Tang, X. Liu, N. Zhang, J. Wang, S. Liang, R. Ma and G. Qiu, *Dalton Trans.*, 2018, 47, 3775-3784.
- 10 L. Ye, C. Wang, L. Cao, H. Xiao, J. Zhang, B. Zhang and X. Ou, *Green Energy Environ.*, 2021, 6, 725-733.