Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ultra-small Ru nanoparticles embedded on Fe-Ni(OH)₂ nanosheets for efficient water splitting at large current density with long-term stability of 680 hours

Huibing Liu^{#,1}, Qiaohuan Jia^{#,1}, Shiqing Huang¹, Liu Yang^{*,1}, Shitao Wang¹, Lirong Zheng^{*,2},

Dapeng Cao*,1

¹ State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical

Technology, Beijing 100029, People's Republic of China

² Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of

Sciences, Beijing 100049, China

[#] These authors contributed equally to this work.

*Corresponding Authors. E-mail: yl@mail.buct.edu.cn, zhenglr@ihep.ac.cn,

caodp@mail.buct.edu.cn

1. Experimental Section

Catalysts Synthesis: The RuFe@NF was synthesized by a simple and mild immersing process. Firstly, the nickel foam (NF) substrate (1 cm \times 2 cm) was cleaned sequentially in 3 M HCl, ethanol, and water solution for 15 minutes each through sonication treatment, and then dried at room temperature. Secondly, 97.2 mg of FeCl₃ was dissolved in 100 mL of deionized water under vigorous stirring. Afterward, take 5 mL of the above solution into a beaker. To prepare Ru_xFe@NF, different content of Ru (x=0, 0.93 mg, 1.87 mg, 3.37 mg) was added into the above solution, ultrasound 10 min to make it homogeneously dispersed. Finally, the dried NF immersed in the above solution for 6 h. The samples were subsequently removed from the solution, directly dried in air to obtain Ru_xFe@NF samples.

Material Characterizations: The scanning electron microscope (SEM) images of the samples were obtained by HITACHI S-4800. Transmission electron microscopy (TEM) images were performed on a TECNAI G2 F20 field emission transmission electron microscope. The powder X-ray diffraction patterns of the samples were analyzed with an X-ray diffractometer (D8 ADVANCE) using Cu K α radiation 40 (λ =1.54178 Å). X-ray photoelectron spectroscopy (XPS) measurements were measured on a Thermo Fisher ESCALAB 250 X-ray photoelectron spectrometer equipped with an Al K α X-ray source. X-ray Absorption Fine Structure (XAFS) was measured at the beam line 4W1B of Beijing Synchrotron Radiation Facility (BSRF), in China. EXAFS data were collected using a fixed-exit double-crystal Si (111) monochromator.

Electrochemical Measurements: All the electrochemical measurements were performed in a general three-electrode system on an electrochemical workstation (CHI760e, Shanghai Chenhua Instrument Factory, China), in which saturated Ag|AgCl regarded as a reference electrode, A carbon rod as the counter electrode and 1 M KOH aqueous solution as electrolyte. For comparison, the commercial catalyst powders (20 wt% Pt/XC-72) was loaded on a pretreated NF with Pt loading of 1 mg on NF (1×1 cm) via drop casting of catalyst ink. The catalyst ink contains 5 mg of catalyst powder, 50 µL of Nafion (117 solution, Aldrich), 800 µL of ethanol, and 200 µL of distilled water.

OER polarization curves obtained from LSV was recorded at a scan rate of 5 mV s⁻¹ from -0.2 to 1.0 V *vs*. Ag|AgCl and HER polarization curves was recorded from -0.8 to -1.6 V *vs*. Ag|AgCl. All polarization curves were iR corrected (V'= V-IRs, V' is the corrected potential, V is the original potential, I is current) in this work unless noted otherwise. The overpotential values are defined by the Tafel equation: η =a+blog[j], where η (V) is the overpotential, j (mA cm⁻²) is the current density, b (mV dec⁻¹) represents the Tafel slope. Electrochemical impedance spectra (EIS) were performed from 100 kHz to 0.1 Hz at 0.47 V *vs*. Ag|AgCl for OER and -1.08 V *vs*. Ag|AgCl for HER. The chronopotentiometry tests were conducted at a constant current density of 10 mA cm⁻². CV method was used to measure the electrochemical double layer capacitance (C_{dl}). The potential was swept at different scan rates of 20, 40, 60, 80, and 100 mV s⁻¹ from 0.1-0.2 V *vs*. RHE. Electrochemical surface area (ECSA) was calculated by the equation:

$$ECSA = C_{dl}/C_s$$

where C_s is the specific capacitance under specific electrolyte. The value of C_s are intercepted from the literature (Appl. Catal. B: Environ. 2021, 298, 120611).

The TOF of RuFe@NF catalyst was calculated according to the equation (Nat. Commun. 2015, 6, 6616):

$$TOF = \frac{j \times A}{4 \times F \times m}$$

where j is the current density obtained at overpotential of 50 mV, A is the surface area of the integrated electrode (1 cm²), F is the Faraday efficiency of 96485 C mol⁻¹ and m is the number of moles of the Ru on the electrode detected by ICP.

The overall water splitting was carried out in a two-electrode system using RuFe@NF both as the anode and cathode, and the polarization curve was recorded at

a scan rate of 5 mV s⁻¹ in 1 M KOH solution with the voltage range from 1.0 V to 2.0 V. For comparison, the commercial Pt/C and IrO₂ as the cathode and anode were also fabricated for the water electrolysis.

2. Supporting Figures

Figure S1. SEM images of RuFe@NF.

Figure S2. The XRD pattern of RuFe@NF.

Figure S3. The photograph of RuFe@NF (left) and bare NF (right).

Figure S4. High resolution XPS spectra of Fe2p of RuFe@NF.

Figure S5. HER polarization curves of Ru_xFe@NF (x=0, 0.93 mg, 1.87 mg, 3.37 mg).

Figure S6. CV curves of RuFe@NF at 0.1-0.2 V *vs.* RHE with the scanning rate ranging from 20 mV/s to100 mV/s.

Figure S7. CV curves of Fe@NF at 0.1-0.2 V vs. RHE with the scanning rate ranging from 20 mV/s to100 mV/s.

Figure S8. CV curves of Ru@NF at 0.1-0.2 V *vs.* RHE with the scanning rate ranging from 20 mV/s to100 mV/s.

Figure S9. Nyquist plots of RuFe@NF, Fe@NF and Ru@NF for OER.

Figure S10. OER LSV curves of Ru_xFe@NF (x=0, 0.93 mg, 1.87 mg, 3.37 mg).

Figure S11 (a) Digital image of the collected gas from water-splitting device. (b) Measured and calculated H₂ and O₂ in cathode and anode, respectively. The digital images of bubbles on the (c) cathode and (d) anode electrode surface.

Figure S12. The water splitting durability test of $Pt/C \parallel IrO_2$ at 50 mA cm⁻².

Figure S13. The water splitting durability test of Ni foam || Ni foam at 10 mA cm⁻².

Figure S14. SEM images of RuFe@NF after HER.

Figure S15. HR-TEM images of RuFe@NF after HER.

Figure S16. SEM and corresponding element mapping images of RuFe@NF after HER.

Figure S17. High resolution XPS spectra of Ni 2p of RuFe@NF after HER.

Figure S18. High resolution XPS spectra of Fe 2p of RuFe@NF after HER.

Figure S19. High resolution XPS spectra of Ru 3p of RuFe@NF after HER. The Ruⁿ⁺ appears presumably owing to surface oxidation by the exposure in the air.

Figure S20. Ru K-edge XANES spectra of the RuFe@NF, RuFe@NF after HER and Ru powder samples.

Figure S21. The FT-EXAFS of Ru K-edge spectra of the RuFe@NF, RuFe@NF after HER and Ru powder samples.

Figure S22. The photograph of initial OER at three electrode system.

Figure S23. High resolution XPS spectra of Ru 3p of RuFe@NF before and after OER.

Figure S24. High resolution XPS spectra of Ni 2p of RuFe@NF after OER.

Figure S25. High resolution XPS spectra of Fe 2p of RuFe@NF after OER.

Figure S26. Fe K-edge XANES spectra of the RuFe@NF, RuFe@NF after OER, Fe foil and Fe₂O₃ samples.

Figure S27. The Fourier transforms and fitting in R space of Fe K-edge spectra for the RuFe@NF, RuFe@NF after OER and Fe foil samples.

Figure S28. SEM images of RuFe@NF after OER.

Figure S29. TEM images of RuFe@NF after OER.

Figure S30. The HAADF-STEM and corresponding element mapping images of RuFe@NF after OER.

Electrocatalysts	Support	Electrolyte	η(V) at 10 mA cm ⁻ 2	References	
RuFe@NF	Ni foam	1 M KOH	1.54	This work	
Co@N-CS/N-HCP@CC	Carbon cloth	1 М КОН	1.545	Adv. Energy Mater. 2019, 9, 1803918	
SCNF-NR		1 М КОН	1.68	Adv. Energy Mater. 2017, 7, 1602122	
Ni ₅ P ₄ films	Ni foil	(pH=14)	1.7	Angew. Chem. Int. Ed. 2015, 54, 12361-12365	
Hierarchical NiCo ₂ O ₄	Ni foam	1 M NaOH	1.65	Angew. Chem. Int. Ed. 2016, 55, 6290-6294	
WN-Ni@N,P-CNT-800		1 М КОН	1.57	Appl. Catal. B: Environ. 2021, 298, 120511	
Rh SAC–CuO NAs	Copper foam	1 М КОН	1.51	Nano Lett. 2020, 20, 5482- 5489	
NF/T(Ni ₃ S ₂ /MnS-O)	Ni foam	1 М КОН	1.54	Appl. Catal., B 2019, 257, 117899.	
Ni ₃ S ₂ /NF	Ni foam	1 М КОН	1.59	J. Energy Chem. 26 (2017) 1217–1222	
FNHNS/NF	Ni foam	1 М КОН	1.55	Small 2017, 13, 1602637	
Ir ₁ @Co/NC		1 M KOH	1.603	Angew. Chem. Int. Ed. 2019, 58, 11868-11873	
CoS _{0.58} P _{0.42}		1 М КОН	1.59	ACS Nano 2017, 11, 11031-11040	
Ru ₂ Ni ₂ SNs/C		1 M KOH	1.68	Nano Energy 2018, 47, 1–7	
Pt-CoS ₂ /CC	Carbon cloth	1 М КОН	1.55	Adv. Energy Mater. 2018, 8, 1800935	
NiFe-MOF-5		1 М КОН	1.57	Inorg. Chem. Front., 2021, 8, 2889-2899	
CoP NFs	Ni foam	1 М КОН	1.65	ACS Catal. 2020, 10, 412- 419	
Co@Ir/NC-10%		1 М КОН	1.7	ACS Sustainable Chem. Eng. 2018, 6, 5105-5114	
Fe _{11%} -NiO/NF	Ni foam	1 М КОН	1.579	J. Catal. 2018, 358, 243- 252	
Fe _{7.4%} -NiSe		1 М КОН	1.585	J. Mater. Chem. A, 2019, 7, 2233–2241	

Table S1. The water splitting activity of RuFe@NF and other bifunctional OF	R/HER
catalysts reported thus far in alkaline electrolyte.	

Hierarchical NiCo ₂ S ₄	Ni foam	1 М КОН	1.63	Adv. Funct. Mater. 2016, 26, 4661-4672
RuTe ₂ -400		1 М КОН	1.57	Appl. Catal. B: Environ. 2020, 278,119281
a-CoSe film	Ti mesh	1 М КОН	1.65	Chem. Commun., 2015, 51, 16683-16686
Ni ₂ P NPs	Ni foam	1 М КОН	1.63	J. Mater. Chem. A, 2016, 4, 5639-5646
C03O4 -MTA	Ni foam	1 М КОН	1.63	Angew. Chem. Int. Ed. 2017, 56, 1324-1328
Fe _{0.29} Co _{0.71} P/NF	Ni foam	1 М КОН	1.64	Nano Energy 2020, 67, 104174

Table S2. The water splitting stability of RuFe@NF and other bifunctional	OER/HER
catalysts reported thus far in alkaline electrolyte.	

Electrocatalysts	Support	Electrolyte	Durability(h)	References	
RuFe@NF	Ni foam	1 М КОН	700	This work	
Rh SAC–CuO NAs	Copper foam	1 М КОН	25	Nano Lett. 2020, 20, 5482- 5489	
Co@N-CS/N-HCP@CC	Carbon cloth	1 М КОН	24	Adv. Energy Mater. 2019, 9, 1803918	
SCNF-NR		1 М КОН	30	Adv. Energy Mater. 2017, 7, 1602122	
Ni ₅ P ₄ films	Ni foil.	(pH=14)	20	Angew. Chem. Int. Ed. 2015, 54, 12361–12365	
Hierarchical NiCo ₂ O ₄	Ni foam	1M NaOH	15	Angew. Chem. Int. Ed. 2016, 55, 6290-6294	
NiVRu-LDH	Ni foam	1 М КОН	300	Nat. Commun. 2019, 10, 3899	
Ru-MoS ₂ -Mo ₂ C/TiN	Carbon cloth	1 М КОН	120	Nano Energy, 2021, 88, 106277	
Ni-Mo-P		1 М КОН	40	Appl. Catal. B: Environ. 2021, 298, 120494	
WN-Ni@N,P-CNT-800		1 М КОН	10	Appl. Catal. B: Environ.2021, 298, 120511	
Fe _{0.29} Co _{0.71} P/NF	Ni foam	1 М КОН	110	Nano Energy 2020, 67, 104174	
NF/T(Ni ₃ S ₂ /MnS-O)	Ni foam	1 М КОН	50	Appl. Catal., B 2019, 257, 117899.	
Ni ₃ S ₂ /NF	Ni foam	1 М КОН	20	J. Energy Chem. 2017, 26, 1217-1222	
Ir ₁ @Co/NC		1 М КОН	5	Angew. Chem. Int. Ed. 2019, 58, 11868-11873	
CoS _{0.58} P _{0.42}		1 М КОН	10	ACS Nano 2017, 11, 11031- 11040	
Ru ₂ Ni ₂ SNs/C		1 М КОН	105	Nano Energy 2018, 47, 1-7	
Pt-CoS ₂ /CC	Carbon cloth	1 М КОН	20	Adv. Energy Mater. 2018, 8, 1800935	
NiFe-MOF-5		1 М КОН	24	Inorg. Chem. Front., 2021, 8, 2889-2899	
CoP NFs	Ni foam	1 М КОН	30	ACS Catal. 2020, 10, 412-419	
Ru-NiCoP/NF	Ni foam	1 М КОН	50	Appl. Catal. B: Environ.2020,	

				279, 119396		
Fe _{11%} -NiO/NF	Ni foam	1 M KOH	20	Journal of Catalysis 358		
				(2018) 243–252		
Fe _{7.4%} -NiSe		1 М КОН	27	J. Mater. Chem. A, 2019, 7,		
				2233-2241		
Hierarchical NiCo ₂ S ₄	Ni foam	1 M KOH	50	Adv. Funct. Mater. 2016, 26,		
				4661-4672		
P-NiFe	Ni foam	1 M KOH	100	Chem. Sci., 2018, 9, 1375-		
				1384		
RuTe ₂ -400		1 M KOH	20	Appl. Catal. B: Environ.2020,		
				278, 119281		
a-CoSe film	Ti mesh	1 M KOH	26	Chem. Commun., 2015, 51,		
				16683-16686.		
Ni ₂ P NPs	Ni foam	1 М КОН	10	J. Mater. Chem. A, 2016, 4,		
				5639-5646		
Co ₃ O ₄ -MTA	Ni foam	1 М КОН	12	Angew. Chem. Int. Ed. 2017,		
				56, 1324-1328		

Content	C 1s	Ru 3p	O 1s	Fe 2p	Ni 2p
RuFe@NF	42.98	3.24	39.00	4.03	10.75
RuFe@NF after HER	39.58	5.97	47.18	3.38	3.89
RuFe@NF after OER	31.40	0.71	51.49	6.18	10.22

 Table S3. The element content of RuFe@NF before and after HER/OER by XPS.